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Abstract

In this report we present a comparison between six screen-space ambient occlusion (SSAO) methods. The aim
is to compare their strengths and weaknesses and ultimately to find a superior method. The methods are chosen to
differ algorithmically to get the broadest overview as possible. We find that a method known as Alchemy AO is the
superior approach. The report also includes discussions of topics related to the field of ambient occlusion in general.
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Notation

Select abbreviations

AO Ambient Occlusion or Ambient Obscurance
SSAO Screen-Space Ambient Occlusion
BRDF Bidirectional Reflectance Distribution Function

WC World Coordinates
EC Eye Coordinates
CC Clip Coordinates

NDC Normalized Device Coordinates
SC Screen Coordinates
TC Texture Coordinates

GPU Graphics Processing Unit (Graphics Card)
SPMD Single Program Multiple Data
RGB Red, Green, and Blue

GI Global Illumination
GLSL OpenGL Shading Language
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(a) Screen-space ambient occlusion
[Mittring 2007a].

(b) Screen-space ambient occlusion
[Filion and McNaughton 2008].

(c) Screen-space ambient occlusion
[McGuire et al. 2011].

(d) Ray-traced ambient occlusion
made with Mental Ray as reference.

Figure 1.1: Example renders demonstrating three screen-space
approaches to ambient occlusion and a ray-traced reference.

1 Introduction

In this section we will first provide some general motivation for
the study of ambient occlusion (AO). Then we proceed to briefly
outline the history of ambient occlusion methods and especially
the screen-space approaches. Lastly, we give a full description of
the project—the basis of this report.

1.1 Motivation

Shadows are key to our perception of the world that surrounds us.
They act as a visual cue that spatially relates one object to another;
a kind of glue between surfaces. Without shadows objects look as
if they are flat, hovering, or both (Figure 1.2a). Studies have shown
that both our impressions of shape [Langer and Zucker 1994] and
depth [Langer and Bülthoff 2000] are related to the amount of light
shadowed from each point on a surface—the occlusion of each
point.

In the real world we take the effect of shadows for granted but
in a virtual world the shadows must be computed just like every-
thing else. The shadow computation is divided into large-scale
shadows (Figure 1.2b) and small-scale shadows (Figures 1.2c and
1.2d). Simply put, ambient occlusion is a model that the describes
small-scale shadows under certain conditions. Examples include
the shadows between wrinkles in the skin, crevices in the wall, or
between your laptop and the table. Putting ambient occlusion into
effect clearly increases the visual fidelity of a virtual world. Refer
to Figure 1.2 to see the effects of ambient occlusion. Notice how
shape in particular is easilier perceived when the light is modulated
by ambient occlusion.

1.2 Brief History

Realizations of ambient occlusion has been around in one form
or the other for a long time. First using ray-tracing to generate
still images . Subsuquently as a pre-processing step for use in
real-time interactive applications though limited to static worlds
[Möller et al. 2008]. Only since 2007 has it been proven feasible to
compute ambient occlusion on-the-fly and in real-time along with
other effects expected in a virtual world using a so-called screen-
space approach [Mittring 2007a; Shanmugam and Arikan 2007;
Nguyen 2007]. This allows ambient occlusion to work within dy-
namic environments in conjunction with animation and physics.
Furthermore, screen-space methods do not need pre-calculated oc-
clusion data which relieves both the artists and the memory budget.

Even with all of the above in favor of screen-space ambient occlu-
sion (SSAO), it still has some drawbacks. Ray-tracing will produce
superior images in general and conveniently integrates with other
global illumination effects such as inter-reflections. The SSAO
methods come close at times and some even include simple color-
bleeding effects [Ritschel et al. 2009]. Still, they have to discard
information to be fast and therefore quality will suffer. Good qual-
ity comes at a performance cost as a general rule but algorithmic
advancements can help tremendously. See Figure 1.1 for a com-
parison of the shadows produced with several SSAO methods and
a ray-traced reference.

A parallel advancement is the emergence of real-time global il-
lumination methods which seem destined to make pure ambient
occlusion routines obsolete (see [Donzallaz and Sousa 2011] and
[Mittring 2012] for the state of the art). However, this is not yet
the case and dedicated ambient occlusion routines are with us for
the foreseeable future [McGuire et al. 2011].

1.3 The Project

We intend to analyze the current ambient occlusion methods and
implement a subset of them. In the best case, to find the superior
all-around method in terms of quality versus compute time. The
study will be limited to screen-space methods and not the recent
global methods. The evaluated methods are chosen to be algorith-
mically different to get the broadest overview as possible. Never-
theless, slight variations in parameters or implementation may be
pursued on a per-method basis if relevant.

SSAO algorithms are usually divided into passes. Therefore, hy-
brids of existing methods may be formed by combining stages
from different sources. We will pursue such hybrids when applica-
ble. In the best case, to find an abstract method from which specific
methods can be derived or instead to simply categorize the passes.

It must be mentioned that all screen-space ambient occlusion meth-
ods are embarrassingly parallel and best implemented on a GPU.
Therefore, the candidate methods will be realized through shaders.
We intend to use the cross-platform OpenGL API to do so.

The end product will be an interactive application that demon-
strates chosen screen-space ambient occlusion methods. The eval-
uation of each method will be done within this application. Here,
interactive means that the user will be able to freely navigate
through the virtual world in real-time. Being interactive also helps
when assessing quality.

Quality is a term in the evaluation and it is best isolated by using
the same reference scene for all methods. We intend to do a man-
ual, visual inspection to evaluate quality. Systematic noise and ar-
tifacts should be categorized only when appropriate. Comparisons
will be inter-method and against a ray-traced reference generated
by an existing ray-tracer.

6



1.3 The Project 1 INTRODUCTION

(a) Unoccluded light (b) Shadow mapping

(c) Ambient occlusion (d) Ambient occlusion (amplified)

Figure 1.2: Example demonstrating the visual effect of ambient occlusion. (a) Unoccluded light. (b) Large-scale shadows implemented via
shadow mapping occluding direct light but not ambient light. (c) Small-scale shadows occluding ambient light [Filion and McNaughton
2008]. (d) The same as the previous image but with the ambient occlusion term raised to a power of 4 to amplify the effect.
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The reference scene will also be the base of the performance eval-
uations. The latter can be determined trivially via compute time
and memory costs. Again, comparisons will be inter-method and
also against the average industry determined render budgets.

1.4 Overview of the Report

We will first provide some basic background information regarding
AO and key concepts in the field of real-time rendering. The latter
will not be a substitute for a text book dedicated to the subject. We
merely intend to brush up real-time rendering concepts. The reader
is assumed to have knowledge and experience in this field prior to
reading the report.

With the basics laid down, we continue to present and analyze a
large array of SSAO methods. The goal is to provide both an
overview of the available methods but also explain the underly-
ing details as they appear. We have chosen to present each method
chronologically (with few exceptions) so the reader gets insight in
how an early method may influence a later one.

Now that the methods have been presented, we will design a way
to compare them. This includes picking which methods we want to
study. We will present common observations regarding all meth-
ods and delve into advantages and disadvantages of each. We also
categorize the methods and provide a generic pipeline for SSAO
computations.

A select set of representative methods are then implemented. We
will provide details about how the governing SSAO models are
translated into working code.

The implemented methods provide a basis for a practical compar-
ison that will ultimately lead to one or more superior method(s)
standing out. We will tweak their parameters and see how close
we can get to the ray-traced reference.

This is followed by a discussion of mainly what we didn’t cover
and how a future study could deepen our understanding of SSAO
methods.

Lastly, we conclude the report by summarizing the work and stat-
ing what we have achieved. The impatient reader may skip the
main body for now and jump directly to the conclusion to see our
recommendations.
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2 Background

This section will first briefly recap key rendering concepts used in
the subsequent discussion. Then the theory behind ambient occlu-
sion is presented in order to prepare the reader to the following
sections. This is followed by an explanation of

2.1 Rendering Theory

The interaction between light and surfaces is complex and there-
fore best approximated for real-time purposes. A historically pop-
ular way to do so is to split light into diffuse, specular, and am-
bient components [Cook and Torrance 1982]. For this discussion
it suffices to label the former two (diffuse and specular) as direct
light—light that comes directly from a source. Ambient light is all
the indirect light—everything that is not direct light. E.g. light that
has undergone any number of reflections or refractions.

It is computationally difficult to calculate physically-correct indi-
rect light for a given surface point and direction. Each surface point
p and direction ω pair has the following associated quantities:

• Lo, the outgoing radiance at p for a given direction ω.

• Li, the incomming radiance at p for a given direction ω.

• f , the ratio of incident irradiance along an incomming direc-
tion ωi to outgoing radiance along ω at p. Known as the
bidirectional reflectance distribution function (BRDF).

Typically,Lo is what we are after, since it is the radiance that meets
the eye from surface point p. Both Li and f are complex to de-
scribe. The interaction between all three quantities is even more
complex [Kajiya 1986]:

Lo =

ˆ
fLi · (n · ω)dω (2.1)

where we have left out some additional quantities not relevant for
this discussion. The integral is over all directions ω in the unoc-
cluded hemisphere defined by p and n. The dot product n · ω in
the integral modulates incomming radiance to account for the fact
that light at shallow angles project to a larger area. See Figure 2.1
for a 2D view of the situation. All quantities depend on p and ω
but it is common to skip those terms in the equations for brevity.

2.2 Ambient Occlusion

Ambient light is the aggregated indirect light for all incomming
directions. That is, we have to evaluate the integral in Equation
2.1 to determine the ambient light. This makes ambient light an
intractable quantity without further assumptions. So to remedy the
sitation, a fair slew of assumptions are made [Cook and Torrance
1982]:

• Ambient light is uniformly incident. I.e. incomming radiance
is the same from all directions (Li is constant).

• Ambient light is independent of viewing angle. I.e. the ratio
of reflected light is the same from all directions (f is con-
stant; the surface is Lambertian).

Together, these approximations give us a simpler model of ambient
light

Loa = fLia

ˆ
(n · ω)dω (2.2)

where Loa is the outgoing radiance of the ambient light; f is the
constant reflectance ratio; Lia is the constant incomming radiance
of the ambient light. This approximation of Loa is possible due to
the assumptions listed above. The key thing to notice is that both

n

p

Figure 2.1: The hemisphere at a surface point as seen from the
side. The unoccluded part is shaded.

f and Lia are now constant since all directionality is defeated by
the assumptions.

The integral in Equation 2.2 is the last complex term that remains.
It is the visibility of the hemisphere at p. Let us first denote the
integral as

A(p) =
1

π

ˆ
(n · ω)dω (2.3)

where p is the point being illuminated; n is the surface normal at p;
ω is a direction in the integral. The integral is over the unoccluded
parts of the hemisphere defined by p and n. The dot product n · ω
changes meaning in this context. It modulates visibility to account
for the fact that occluders at shallow angles project to a larger area.

A accounts for the occlusion of ambient light. A classical simpli-
fication is to use A = 1 to avoid computing the integral. With
A constant, ambient light can reach any surface point p from any
angle as if p was being lit in isolation. Mathematically speaking,
Loa would be constant and the result is dully lit flat surfaces. Mod-
ern implementations use the original definition from Equation 2.3.
The latter limits incoming ambient light Lia to directions that are
visible from p. In other words, Equation 2.3 takes the surround-
ings into account. This greatly enhances the resulting images as
highlighted in Figure 1.2.

Figure 2.1 shows an example for a surface point p in a crevice
where A is roughly 0.45. In effect, the outgoing ambient radiance
Loa will consist of 45 % of the reflected incomming ambient ra-
diance fLia. This goes hand in hand with the intuition that the
crevice should be dark. In constrast, a point at either of the two
peaks in Figure 2.1 will have A = 1.0 as the associated hemi-
sphere is unoccluded.

2.2.1 Defining the Hemisphere

It is easy to conceptualize the unoccluded hemisphere but we need
a stronger mathematical definition for it in order to evaluate the
integral. Let the function V (p, ω) be the visibility of a ray from p
in direction ω. V is defined as

V (p, ω) =

{
0 Ray from p in direction ωhits anything
1 Otherwise

Now we can extend A to evaluate over the entire hemisphere. Let
the new integral be

AO(p) =
1

π

ˆ
Ω

V (p, ω)(n · ω)dω (2.4)
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p

Figure 2.2: Ray-tracing to solve the integral. Green rays are visi-
ble (V = 1) while red rays are occluded (V = 0).

where Ω is the hemisphere defined by p and ω. Equation 2.4 is
the definition that is commonly found in the litterature. The term
ambient occlusion (AO) [Landis 2002] was coined long after the
basic formulation of Equation 2.4 and yet it is the most popular
today. The integral can be determined by Monte Carlo integration
with a ray-tracer by proping a discrete number of directions [Lan-
dis 2002]

AO ≈ 1

N

N∑
n=1

V · (n · ωn)

where N is the number of probe rays; ωn is a direction chosen
uniformly at random for each n. See Figure 2.2 for a sideview of
the situation.

2.3 Ambient Obscurance

Recall the scene from Figure 1.1d. Were it to be rendered with
the formulation of AO as given in Equation 2.4 the result would be
that of Figure 2.3. Notice that the result is very dark and almost
impossible to recognize. The problem is that very few rays actually
manage to escape the scene since there is only a small opening in
the top of the scene. I.e. V will be 0 for the most part. For a fully
enclosed scene, the resulting image would be entirely black. This
is unwanted and we need a more practical definition of AO that
gives visually pleasing results.

Ambient obscurance [Zhukov et al. 1998] is the term that we are
really after. It replaces the visibility function V with an attenuation
(falloff) function ρ(d) based on the distance d. The function ρ is
empirically chosen but should have the general properties:

• ρ is a monotonically increasing function of d.

• There exists and upper bound dmax such that ρ(d) = 1 for
d > dmax.

The idea with ρ is to make distant occluders have little or no in-
fluence. This generally brightens up the resulting images and pro-
duces visually pleasing results. It should be noted that ρ is not
physically-based and is entirely chosen based on aesthetics. The
definition for ambient obscurance is similar to what we already
have seen

AO∗(p) =
1

π

ˆ
Ω

ρ(|pω − p|)(n · ω)dω (2.5)

Figure 2.3: Ambient occlusion as given by Equation 2.4. Rendered
with Mental Ray.

where |pω − p| is the distance from p to the first surface hit by a
prope ray. See Figure 1.1d for a ray-traced example with dmax =
10.0 and ρ being a simple linear falloff function (capped at dmax,
of course).

Note that V is really just the special case of ρ where dmax =∞.

2.4 Terminology

The two terms ambient occlusion (using V ) and ambient obscu-
rance (using ρ) are used interchangeably in the litterature. Further-
more, both terms have the unfortunate property that they abbrevi-
ate to the same two letters, AO. Anyhow, ambient occlusion in the
classical sense (Equation 2.4) has little practical merit because of
its difficulty dealing with (near) enclosed scenes. Effectively, many
so-called ambient occlusion implementations are really based on
the ambient obscurance idea (Equation 2.5). The term ambient
occlusion just seems to be more popular for the resulting visual
effect. In the following sections, we will continue to use the term
ambient occlusion even though the more appropriate term is ambi-
ent obscurance. So for the rest of this report the following applies

AO = AO∗

2.4.1 Inversion

As you might have noted, theAO function increases with visibility
(AO = 1 implies full visibility) even though the function is sup-
posed to denote ambient occlusion. Consequently, some authors
like to invert the definition like so

AO = 1−
ˆ
. . .

It is more or less a matter of taste. In this report, we use the defi-
nition given by each method. The choice should be clear from the
context.
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2.5 Real-Time Rendering

The theory discussed in the above sections applies to rendering in
general. Real-time rendering is a specialized sub-field that focuses
on delivering many frames per second which in turn enables us to
have interactive virtual worlds. This section will not describe how
to apply AO theory in a real-time context. That is left for a later
section. Instead, this section will present some common terms that
will make the basis of the later discussion.

2.5.1 Transformations, Spaces, and Coordinates

There are many resources on this subject so we will not go into de-
tails here. We use the terminology from the OpenGL API. Consult
the OpenGL API reference for more details.

There are a key number of coordinates (spaces) in which a virtual
world can be represented (in 3D). This will become important for
the later discussion as many of the SSAO methods will often trans-
form their input between spaces. The following list is meant as a
quick reference and not a detailed explanation. It can’t substitute a
thourough text on the subect.

World coordinates (WC) Where world is defined with reference
to an absolute origin. A so-called global space.

• The x-coordinate is right.

• The y-coordinate is up.

• The z-coordinate is into the screen.

• Transformation is represented by the model-matrix.

Eye coordinates (EC) Where the origin has been shifted to
(0, 0, 0) and the world is rotated to simulate a different viewing
angle; perhaps a camera.

• The z-coordinate is now out of the screen. I.e., the eye is
looking down along the negative z-axis.

• Transformation is represented by the view-matrix.

Clip coordinates (CC) where values have been projected and
clipped.

• Transformation is represented by the projection-matrix and a
subsequent clipping by comparing the w-coordinate.

Normalized device coordinates (NDC) Where values have
been divided by the homogeneous w-coordinate.

• (x, y, z) ∈ [−1; 1]3.

• Transformation is the division by the w-coordinate.

Screen coordinates (SC) Where values have been translated
into the window range.

• x ∈ [0,width].

• y ∈ [0, height].

• z ∈ [0, 1] but non-linearly.

• Transformation is simple translation and scaling.

Transformations are meant to be applied in the order given above
in order to go from the world coordinates to screen coordinates. It
is sometimes convenient to use a space somewhat in between NDC
and SC:
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Compute Buffers

Shade and Tonemap

Figure 2.4: Basic deferred shading pipeline.

Texture coordinates (TC) Where values have been translated
into the texture look-up range.

• (x, y, z) ∈ [0; 1]3. Again, the z-coordinate is stored non-
linearly.

• Transformation is simple translation and scaling.

2.5.2 Deferred Rendering

Many modern real-time applications use the concept of deferred
rendering to get from polygons to pixels [Filion and McNaughton
2008; Smedberg and Weight 2009; Mittring 2012; Kaplanyan
2010]. The classical motivation is to conquer a technical nui-
sance known as overdraw. I won’t go into details here as this is
not within the scope of this report. The basic remedy is to de-
fer the actual shading of geometry (as governed by Equation 2.1)
and instead output intermediate computations to buffers. The in-
termediate information can be surface positions, normals, color,
BRDF-parameters, or anything the might suit the particular imple-
mentation of Equation 2.1. A basic pipeline for deferred shading
can be seen in Figure 2.4. The figure is simplified for the discus-
sion. Normally, shading and tonemapping would also be separate.
The key thing to note here is that shading is decoupled from the
rasterization of polygons. In other words, the shading occurs in
screen-space. The key benefit is that Equation 2.1 is applied (in
some form or another) using the buffers as the only input.

We will now briefly present some commonly used buffers.

Positions and Depths One popular choice is to buffer the sur-
face depths as seen in EC. The result can be seen in Figure 2.5a
where the colors black and white denote positions near and far
from the viewer, respectively. Given the scene depth, it is trivial to
reconstruct the surface positions in both eye and world coordinates
[Mittring 2007a; Kasyan et al. 2011]. This saves a lot of bandwidth
as only a single depth value has to be stored instead of 3 position
coordinates. Though you would generally need a high-precision
depth buffer to reconstruct the positions without artifacts.
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(a) Depths (b) Normals (c) Diffuse colors

Figure 2.5: Buffers commonly used in deferred rendering.

Normals Normals can also be explicitly stored as seen in Fig-
ure 2.5b where each axis is represented by a color. However, it is
also possible to reconstruct the normals from position information
[McGuire et al. 2012; Bukowski et al. 2012]. This will cut the en-
tire normal buffer from the memory budget but it does lead to some
artifacts along depth discontinuities [Bukowski et al. 2012].

Colors Surface material properties such as diffuse color are of-
ten buffered as they can’t really be reconstructed. See Figure 2.5c
for a diffuse color buffer.

Miscellaneous BRDF-properties and the like are usually stored
within any left-over space from the above-mentioned buffers.

2.5.3 Shaders

Both the buffering and shading pass of Figure 2.4 are typically im-
plemented in shaders. A shader is a program that runs on the GPU
and evaluates on different input data, depending on its type. Orig-
inally, shaders worked in a directly connected pipeline. A vertex
shader took raw polygon data and produced the position, normal,
color, etc. for the next stage. A fragment shader immediately
received this input and combined them to a pixel value. Along
the line came the ability to read buffers in shaders. This feature
was originally intended for texturing. Deferred shading bent this
purpose a bit by introducing buffers. A vertex shader takes raw
polygon data and processes it into the aforementioned buffers. A
fragment shader reads from the buffers and perform shading cal-
culations on them to output final colors.

Shaders implement the Single Program Multiple Data (SPMD)
principle which is why GPUs can execute them in parallel and
achieve great speeds. A deeper discussion quickly gets involved.
We advice the reader to consult a text dedicated to shaders for fur-
ther reference. The key thing to remember is that shaders can be
exploited beyond their initial purpose to perform computations for
every pixel several times per second. In the following, we will as-
sume that the reader has experience with the use of shaders in a
deferred pipeline.

The theory of AO combined with concepts from real-time render-
ing now enables us to uncover SSAO.

12



3.2 Previous Work 3 ANALYSIS

3 Analysis

This section will first present previous work concerning real-time
AO and SSAO in particular. We consider each method chronologi-
cally and explain the underlying details as they come. The methods
are also outlined in Table 1. We encourage the reader to use this
table to get a historical overview.

3.1 Ray-Tracing and Rasterization

Historically, AO has been a feature reserved for ray-tracers because
the definition (Equation 2.5) lends itself easily to such an approach
[Landis 2002]. However, ray-tracers are not yet used for interactive
real-time rendering on a large commercial basis. The key prob-
lem is that a ray-tracing is not compatible with the rasterization
approach GPUs utilize. With ray-tracing, the entire scene repre-
sentation must be in available at all times for the intersection tests
to work. With rasterization, only a few polygons are considered at
a time.

3.2 Previous Work

Despite the abovementioned difficulties, authors have found ways
to bring AO into the real-time domain. We will uncover them be-
low. Note that the focus here is on the so-called screen-space ap-
proaches but other methods may be presented if relevant.

3.2.1 Disk Proxies

The algorithm requires as input every polygon mesh of the scene
decompositioned into disk elements. The idea is to then see how
these disks occlude geometry in the scene [Pharr and Fernando
2005]. It is the first proposed alternative to ray-tracing for imple-
menting AO. The method was later improved by smoothing the
result [Nguyen 2007]. As we will soon discover, this is a trait
that is shared with many screen-space methods. That being said,
the smoothing is not just implemented a post-process filter but as
an algorithmic change that linearly blends two stages instead of a
hard cut as in the originally proposed method.

The method does not classify itself as a screen-space approach and
we won’t go into further detail with it. It is mentioned here simply
because it is the first (near) real-time AO method.

3.2.2 Unsharp Masking

We assume that the reader is familiar with the principle of applying
filter kernels to images. E.g. using a guassian blur kernel to blur
an image. This principle has a surprising application with regards
to AO. The idea is to apply a so-called unsharpening filter kernel
to the depth buffer [Luft et al. 2006]. The result is not a direct
AO computation but a post-process effect that mimics it. I.e. there
is no real physical motivation behind the approach but it produces
visually similar results. However, the method is not in the scope
of this project and we won’t go into details with it. One thing
that is worth noting is the use of the depth buffer. This becomes a
recurring element of the future methods.

3.2.3 First Screen-Space Approaches

Depth Buffer as a Scene Approximation As noted with un-
sharp masking, the depth buffer has some uses beyond its original
purpose. It can also serve as a coarse representation of the scene
[Mittring 2007a; Shanmugam and Arikan 2007]. See Figure 3.1
for a sideview of the situation. Here, the original scene is denoted
by the dashed line and the shaded object is the depth buffer rep-
resentation of it. Figure 3.1 could be a scanline through the depth

Figure 3.1: Depth buffer as a scene approximation.

buffer of Figure 2.5a. This implies that we actually have a repre-
sentation of the entire scene available with rasterization. However,
the nature of the depth buffer renders it only a rough approximia-
tion. We will go deeper into this later.

Extended Pipeline Another pass must be included in the shader
pipeline for the AO computations (See Figure 3.2a). Notice how
the AO pass uses the depth buffer as its only input for now. It must
be mentioned that it is possible to compute AO in the shading pass
since it also gets the depth buffer as input. However, it is generally
a better idea to calculate AO in its own pass. The reason being
that it makes it straight-forward to compute the AO pass at a lower
resolution. We will dicuss some approaches that involves this later
on. It is also easier to isolate performance characteristics when the
AO has a dedicated pass. This is very relevant in the context of this
project.

The shader in the AO pass works on buffer input just like the shader
in the shading pass. This makes the AO shader a fragment shader
which executes for every pixel on the screen. It is the reason why
these kind of AO algorithms categorized as working in screen-
space.

Screen-Space Integration Now that the scene is present
through the depth buffer, we have information available to the
shader beyond the pixel currently being shaded. This allows for
some interesting approaches to solving the integral of Equation 2.5.

One way is to approximate AO as the ratio of visible to occluded
nearby sample points [Mittring 2007a; Mittring 2007b; Dachs-
bacher and Kautz 2009]. The integral then becomes

AO ≈ 1

N

N∑
n=1

V ′(sn) (3.1)

where N is the number of sample points; sn is the n’th sample
point; V ′ is 1 if sn is visible and 0 otherwise. The sn sample
points are scattered in a sphere around p with a radius of r. See
Figure 3.3 for a sideview of the situation.

The current position p must first be reconstructed. The chosen ap-
proach is to reconstruct p in screen coordinates which is computa-
tionally inexpensive. pxy are the current pixel coordinates and pz
can be read directly from the depth buffer. With p determined, it
should be trivial to choose sample points in the surrounding sphere.
However, as the authors of the method note, this can be a source of
artifacts. We will come back to this in a moment.
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(a) Basic overview. Compare it to the deferred shading
pipeline of Figure 2.4.
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(b) Extended overview. The dashed connection from the normals buffer ot
the AO computation indicates that it is optional for many methods.

Figure 3.2: The ambient occlusion pipeline.

In Figure 3.3 it is intuitive to see that samples below the surface are
occluded. The intuition follows closely into the actual definition of
V ′. A sample position s is in screen coordinates just like p so it
has an associated sz coordinate. The surface depth above s can be
read from the depth buffer as sd = depth(sxy). All that is left is
to do a simple comparison

V ′(s) =

{
1 sd > sz
0 Otherwise

and the visibility is determined.

Also note that method (Equation 3.1) samples in a sphere around
p and not a hemisphere as in the original formulation (Equation
2.5). I.e. we must expect half of the samples to be occluded; even
for a flat surface.

All is good in theory but the sample distribution issue remains.
If the sample positions are fixed for each p the resulting AO will
have banding artifacts. Instead, sample points are distributed uni-
formly at random which removes the banding artifacts but intro-
duces high-frequency noise. The authors circumvents the noise by
applying a geometry-aware blur over AO calculations. Unfortu-
nately, due to the nature of GPUs, the blur must be done a shader
pass of its own. Another hurdle is that shader programs can’t gen-
erate random variables. Instead, a buffer of pre-computed random
variables are supplied to the AO shader. These extra steps requires
an extended ambient occlusion pipeline (See Figure 3.2b).

The authors also note a fair slew of other shortcommings that we
will address in the later comparison.

Variations There exists a variation [Filion and McNaughton
2008] to the abovementioned method whose differences will be
outlined below.

The sample positions s are found in world coordinates and then
projected into screen coordinates for the depth comparison. This

p

sz

sd

Figure 3.3: Approximation of AO [Mittring 2007a]. The green
and red rectangles are the visible and occluded samples, respec-
tively. One sample is also shown projected onto the surface.
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n

p

Figure 3.4: Approximation of AO [Filion and McNaughton
2008]. The green and red rectangles are the visible and occluded
samples, respectively.

has some implications that we will later uncover. The authors also
re-introduce an attenuation function, ρ, whereas a simple compar-
ison function, V ′, was used before. This alleviates over-occlusion
due to foreground objects with high sd values. We will also treat
this in the comparison later. Self-occlusion is also treated differ-
ently. As seen in Figure 3.3, samples are found in a sphere around
p and half the samples are treated as occluding per default. The
alternative approach is to first find samples in the sphere but then
flip them back into the hemisphere according to the surface nor-
mal, n. See Figure 3.4 for the differences. Effectively, only half
as many samples are needed with this approach. There are other
subtle differences but the above are the most prominent.

Spherical Proxies Around the same time as [Mittring 2007a]
came an independently developed method which also works in
screen-space and shares many of the same traits. It approximates
AO by averaging the occlusion of nearby surfaces represented by
spherical proxies [Shanmugam and Arikan 2007]. The method re-
constructs p in screen coordinates and distributesN samples sn in
a disk around p in screen coordinates as well—similarly to [Mit-
tring 2007a]. This is were the similarities stop, as each sample s
is now projected to the surface by setting sz = sd (See Figure
3.3 for reference) followed by a transformation into world coor-
dinates. A sphere is positioned at each world-space s, which is
intended to approximate the nearby surfaces. The radius of the
sphere is a function of sd. AO is now approximated as the sum
of how much each sample sphere occludes the hemisphere at p.
Note that this is not just a comparison function like V ′ as found
in [Mittring 2007a]. The hemisphere is defined by the position p
and normal n in world coordinates. The latter can be read from
the normal buffer as seen in Figure 3.2b. The paper goes on to
approximate AO for distant surfaces as well. Since this is not ac-
complished within screen-space, we won’t go into further details
with it.

The method described above is very involved and approaches the
AO approximation very differently compared to other proposals.
It is an interesting albeit overly-complex technique that hasn’t got
much mention since its inception. We have therefore chosen not
to pursue this method any further. It is mentioned here because
it was one of the first screen-space techniques and because of its
similarities with [Mittring 2007a].

3.2.4 A Horizon-Based Approach

Another way to approximate AO is by determining the angle of
the visible horizon, h, on the hemisphere around p [Bavoil et al.
2008a; Bavoil et al. 2008b; Bavoil and Sainz 2008; Dachsbacher
and Kautz 2009]. That is, we want to find the angle of the shaded
area in Figure 2.1. Under the assumption that the heightfield is
continuous, all rays traced beyond this angle should be occluded
(See Figure 2.2). We will discuss the implications of this assump-
tion later. Further assume that we can find the horizon angle h(θ)
for a given angle around the view vector, θ. The sideview in the
figures represent the situation for one such angle, θ. We want to
find the average h for all θ around the view vector. The authors of
the method present the following equation to do so

AO = 1− 1

2π

ˆ π

θ=−π
AOhorizon(θ)dθ (3.2)

where the integral goes through all angles θ around the view vector.
Notice the inversion of the AO definition.

Now we need a way to evaluate AOhorizon(θ) for a given θ. In
Equation 2.5 we should trace rays in every direction from the tan-
gent to the normal weighed by ρ. However, we already know that
all rays below h(θ) are occluded so there is no need to actually
trace them. Symmetrically, all rays above h(θ) are visible, and
don’t need to be traced either. Instead, we can find the AO con-
tribution as the integral between the tangent angle t(θ) and h(θ).
The tangent angle t(θ) can be easily derived from n and θ. The
authors put it as follows

AOhorizon =

ˆ h(θ)

α=t(θ)

ρ(d) · cos(α)dα (3.3)

where cos(α) is the dot product from Equation 2.5. ρ(d) is a lit-
tle more involved and will be explained later. The authors further
evaluate Equation 3.3 to

AOhorizon = ρ(d)(sin(h(θ))− sin(t(θ)))

We can now insert Equation 3.3 into 3.2. For computational pur-
poses, it is also useful to use Monte Carlo integration to solve the
integral

AO = 1− 1

N

N∑
n=1

ρ(dn)(sin(h(θn))− sin(t(θn))) (3.4)

where N is the number of samples.

Screen-Space Evaluation The key to implement Equation 3.4
is to ray-march the depth buffer in screen-space to find h(θ) as
proposed by the same authors [Bavoil et al. 2008a]. The idea is il-
lustrated in Figure 3.5. The a ray is created from p in direction θ in
screen coordinates. The ray traverses the depth buffer and samples
at distinct intervals. Each sample is projected onto the scene sur-
face by setting sz = depth(sxy). The sample’s AO contribution is
computed from the occluded angle acos(t∗, normalize(s−p)) and
weighed by ρ(|s− p|). This is how ρ is integrated. t∗ is initially
the tangent vector but is reassigned to each successive samples’
s − p vector. This allows each sample to contribute and avoids
overocclusion. A sample that is below the currently defined t∗ is
rejected since it is not visible from p. See Figure 3.5 for reference.

Readers familiar with real-time rendering might note the strong
parallel to parallax occlusion mapping regarding the screen-space
ray-marching.

Furthermore, the authors suggests to jitter the step size of the
ray-marching and choose directions randomly to avoid systematic
noise. This is similar to the artifacts encountered with [Mittring
2007a].
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n

p

h

Figure 3.5: Approximation of AO [Bavoil et al. 2008a]. The
green and red rectangles are the used and rejected samples, re-
spectively. The rightmost used sample determines the horizon an-
gle, h. This sideview shows the screen-space ray-marching for one
angle θ around the view vector (arrow pointing towards the eye).
Notice that all samples are projected onto the scene surface by
means of the depth buffer.

Variations It is also suggested to trace the rays in eye coordi-
nates and then project them into screen coordinates every step
to sample the buffers [Dimitrov et al. 2008; Sainz 2008]. This
is known as Horizon-Split AO (HSAO) whereas the method de-
scribed in [Bavoil et al. 2008a] is known as Horizon-Based AO
(HBAO). The added projections imply extra computations which
makes HBAO superior in terms of performance. The papers back-
ing both HSAO and HBAO are by the same authors but the latter
paper dates the former by half a year. We think it is safe to con-
clude that HBAO is an improvement upon HSAO. Consequently,
we will not go further into detail with HSAO.

3.2.5 Directional Occlusion

In between all the SSAO methods came a slightly different take
on things known as Screen-Space Directional Occlusion (SSDO)
[Ritschel et al. 2009; Dachsbacher and Kautz 2009]. SSDO is
not another take on how to calculate ambient occlusion in screen-
space. It is an extension of the core SSAO idea.

SSDO does not only compute AO but also the incoming radiance
at the surface point belonging to p. This allows for colored and
directed shadows in the result. Furthermore, SSDO has an optional
second pass that approximates one diffuse indirect bounce of light.
This is done by sampling nearby values of direct radiance gathered
in the first pass. Color bleeding effects as known from ray-traced
global illumination solutions are thereby possible.

We include SSDO here because it is an interesting extension that
can be built on top of most SSAO method. However, as SSAO
is the focus of this report, we will not go into great detail about
SSDO integration.

One thing worth noting with respect to SSAO methods is the treat-
ment of screen-space related artifacts. The authors address the is-
sue of missing scene information due to the fact that the depth
buffer only contains information about the frontmost objects. They
suggest to use depth peeling. Simply put, this involves a layered

depth buffer that records the depths of multiple objects per pixel.
With this additional information, the scene is better represented
and some artifacts dissapear. Alternatively, the authors suggest to
use the collective depth information from multiple views. We will
revisit this topic later.

3.2.6 Multi-Layer and Multi-Resolution

Another SSAO extension came around the same time. [Bavoil and
Sainz 2009] presents two enhancements to a generic SSAO algo-
rithm. I.e. the authors do not present a new SSAO method alto-
gether but merely suggest two improvements to existing and future
methods.

The first improvement is on quality. The authors suggest to use
depth peeling as already presented in [Ritschel et al. 2009]. Addi-
tionally, [Bavoil and Sainz 2009] also suggests to use an enlarged
field (a guard band) of view when calculating AO in order to fix
artifacts near scene edges. The problem is that there is no scene
information outside the buffers range. Consequently, the SSAO
algorithms fail collectively near borders. The remedy is to pro-
vide the borderline scene information by rendering buffers that are
larger than the final image.

The second improvement focuses on performance without sacrific-
ing quality. The idea is to split the AO calculation into two passes:
One at half-resolution and one at full-resolution. The former pass
is quickly rendered because it operates on 1

4
of the pixels. The

latter pass then either simply up-scales the half-resolution results
or recalculates the AO if it is found that more precision is needed.
The details are rather involved and we won’t present them here.

Variations As shown in the pipeline of Figure 3.2b, it seems
obligatory to blur the AO computation to remove the noise in-
troduced by the random sampling patterns. However, using multi-
ple resolutions the blurring step can be skipped [Hoang and Low
2010]. There are 2 phases to the algorithm. AO is first calculated
at increasingly lower resolutions using symmetric lower-resolution
input (depth and normal buffers). Then the differentAO values are
combined into a final full-resolution render. The idea seems sim-
ilar to the dual-resolution method developed in [Bavoil and Sainz
2009] but there are some key differences. Firstly, the authors sug-
gest to down-sample the input depths and normals to use for calcu-
lating AO. This roughens the already coarse approximation of the
scene. Secondly, they do not propose an intelligent combination
scheme to combine the different AO values but merely suggest
to blend them together using an edge-aware bilateral filter. De-
spite the rough approximations the authors get good results. The
multi-resolution input and output buffers are easily represented on
modern hardware through mipmaps.

The same authors revisit their initial implementation two years
later with several improvements [Hoang and Low 2012]. This time
around, each pass is explained in detail and with mathematical mo-
tivation. Also, the authors present methods to intelligently down-
sample both the input buffers and combine the differentAO values
into one result. As such, the proposed method is no longer only
aesthetically motivated but as sound mathematical reasoning be-
hind it. However, the details are still involved and we won’t pursue
these methods further.

3.2.7 A Temporal Approach

One way to improve the quality of the AO computation is to re-
use the information from previous frames [Smedberg and Weight
2009]. The authors present an SSAO algorithm that basically fol-
lows Equation 3.1 but with the temporal extension. As such, the
temporal extension can be applied to other SSAO methods as well.
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A temporal filter is presented which improves the result of mov-
ing scenes. The motivating observation is that the view (camera)
changes gradually from frame to frame as do scene animations in
regular cases. The idea is to filter AO of frame n− 1 with AO of
frame n by blending the two terms together over time—effectively
removing noise artifacts under movement. For this to work, the
view and animation state of frame n−1 must be available at frame
n which incurs a memory overhead. Since p in screen coordinates
is likely to be different between the two frames, it must be calcu-
lated for both frame n−1 and frame n from p in world coordinates.
The saved view and animation state makes this possible—the au-
thors call it reprojection. Now AO can be sampled from frame
n− 1 in frame n.

It should be noted that when there is not movement this extra tem-
poral filter does not provide a quality advantage but only incurs a
performance cost. This is because the filter blends between frames
over time. In a static scene, where AO doesn’t change between
frames, the filter has no effect. Even in dynamic scenes, streaking
artifacts can occur depending on the rate of convergence between
old and new AO values.

The authors also explains that the random sample look-ups trash
the texture cache if the sample radius is too large. This quickly
becomes a performance problem. Clamping the radius to a low
value improves the spatial locality of the texture samples in the
cache. As we will soon uncover, later algorithmic advances will
tackle this problem more elegantly.

Variations An alternative take is to not simply blend AO com-
putations between frames but actually re-use the samples to refine
AO over time [Mattausch et al. 2010; Scherzer et al. 2010]. That
is, to aggregate the samples of older frames in order to converge
to a better result. This has the implication that the number of sam-
ples must additionally be stored per pixel. The upside is that the
quality will be improved even for static scenes (as opposed to the
method proposed in [Smedberg and Weight 2009]). This method
was developed independently of [Smedberg and Weight 2009].

The authors go further into how to integrate the reprojection into
a deferred pipeline and how to deal with disocclusion. The latter
is when background objects become visible (disoccluded) because
of foreground movement. The general idea is to see if the relative
depth difference of p in world coordinates between frame n − 1
and n is above a given thresshold. If so, it is most likely that p
now represents the surface of the background object and AO must
be calculated anew.

3.2.8 The First Hybrid

A combination of the methods found in [Bavoil et al. 2008a] and
[Shanmugam and Arikan 2007] forms the first proposed hybrid
method [Song et al. 2010]. The latter method has over-occlusion
issues because it fails to reject invalid occluders in all situations.
The idea is to approximate nearby surfaces by sphere proxies (as
done in [Shanmugam and Arikan 2007]) but simultaneously cal-
culate the horizon-angle (as done in [Bavoil et al. 2008a]) in order
to reject sphere locations s that are not visible from p due to an
occluding horizon. This way over-occlusion does not occur.

We mention this method because it is the first hybrid method. As
previously told, we will not go into further detail with the method
of [Shanmugam and Arikan 2007] and its derivatives.

3.2.9 A Volumetric Approach

A new yet seemingly familiar term, Volumetric Obscurance (VO),
is presented which is the ratio of unoccluded to occluded volume

of a 3D neighborhood around p (e.g. a sphere) [Loos and Sloan
2010]. They formalize VO as

V O (p) =

ˆ
X

ρ(|x− p|)O(x)dx (3.5)

whereX is a 3D volume around p; x is a point inX; ρ is as before;
O(x) is an occupancy function which is either 1 if there is matter
at x and 0 otherwise. They use Equation 3.5 in place of 2.5. That
is, they propose to set

AO = V O

for the purpose of calculating AO. As the authors note, the above
equation is valid under the assumption that a ray from p in any
direction will only intersect a single surface.

In a sense, the methods of [Mittring 2007a] and [Filion and Mc-
Naughton 2008] can be thought of as solving the integral in Equa-
tion 3.5 using point samples. Each point sample represents a part
of the probed volume X; be it a sphere or a hemisphere. When the
number of samples N approaches∞ then the samples cover all of
X and we have an equal formulation. This is under the assumption
that V ′ = O, of course.

The authors generalize the use of point samples to using line or
area sampling to solve the integral. Hereby, they get a better vol-
ume approximation which improves the overall result. The idea of
line sampling is outline in Figure 3.6. The integral is approximated
as the ratio of visible to occluded line lenghts. The sample posi-
tions sn themselves are found in a disk around p in screen coordi-
nates. It is trivial to compute the visible part of the line length. The
crossing point from visible to occluded is indicated by a simple
depth buffer lookup, sd = depth(sxy). The height of the sphere
at sxy can be found with simple trigonometry,

√
r2 − (s2

x + s2
y),

where r is the radius of the sphere. The proposed benefit of line
sampling over point sampling is that it deals better with movement.
Point samples are either occluded or not (tested with V ′), and thus
pop-in and pop-out can occur for slight movement. Line samples
have a visible to occluded ratio per sample which enables them to
fade smoothly under movement.

Another novel idea is to combine the AO or V O calculations of
a small sphere and a large sphere. This technique captures both
low-scale as well as broad-scale details.

Variations There are many ways to choose the sample points in
a disk around p using both randomization and rotation [Ownby
et al. 2010]. The authors propose several variants and analyze the
differences. One proposal is to use an outward spiral pattern to bet-
ter get all ranges. However, as previously mentioned most fixed-
formation sampling patterns results in banding—the spiral distri-
bution included. In the end, they randomly rotate each sample in
the spiral around the view vector.

The authors also propose to use paired sample locations (symmet-
ric around p) to better estimate missing sample information due to
the rough scene approximation given by the depth buffer. We will
look at this in detail later.

Another suggestion actually used in a large scale production is to
use line sampling [Loos and Sloan 2010] together with temporal
refinement [Mattausch et al. 2010] proving that the latter can work
as an extension of the former [Kaplanyan 2010].

3.2.10 Poisson Sampling Approaches

Samples that are distributed on a surface where the distance be-
tween any two samples is over a given threshold are said to be Pois-
son distributed. Formally, this distribution property can be stated
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p

Figure 3.6: Approximation of AO [Loos and Sloan 2010] The
grey rectangles are the N sample points sn which define the line
segments samples together with the view vector and sphere. The
green and red line segments are the visible and occluded parts of
each sample. Notice how p itself contributes as a sample.

as
∀si∀sj (|sj − si| > d|i 6= j)

for sample positions s and threshold d.

The idea of using poisson distributed samples on a disk was in-
troduced as part of a hybrid of existing methods [Sourimant et al.
2011]. The authors propose to ray-march the depth buffer as a
height-field as proposed in [Bavoil et al. 2008a]. The difference is
that they are not measuring the angle of the free horizon but instead
aim to find a better sample occluder distance by ray-marching. The
samples themselves are chosen from a Poisson distribution on a
disk surface and projected into the hemisphere defined by p and n.
The AO computation itself is akin to [Mittring 2007a] and [Filion
and McNaughton 2008].

There exists another algorithm that shares many of the above steps
but differs in the details [Aksoy and Phaneuf 2011]. It starts by
projecting Poisson distributed sample positions from disk onto the
depth buffer (scene surface) in screen coordinates. If a sample
position is behind the plane defined by p and the normal n then
it is occluded. If not, then a function ρ(|s− p|) weighs the AO
contribution such that distant samples contribute less.

The authors note that they did not have to blur the result with 32
samples per fragment at interactive rates. Though it should be kept
in mind that only key characters were shaded using the method.
Large portions of the frame (e.g. the background geometry) did
not recieve this kind of AO calculation.

Similarly to [Loos and Sloan 2010], the authors suggest to use
two hemi-spheres with different radii to capture both fine-scale and
broad-scale details.

3.2.11 A Curvature-Based Approach

Similarly to [Luft et al. 2006], the authors follow a novel strat-
egy to approximate AO [Hattori et al. 2010; Hattori et al. 2011].
They approximate AO from the curvature of the geometry in the
neighbourhood around p. The language in both papers is hard to
follow and the results have either a very distinct, stylish look or

n n’

p

Figure 3.7: The normal, n, and bent normal, n′, at p. Notice that
the bent normal points in the average unoccluded direction.

suffer from banding artifacts. Nevertheless, the method performs
computationally well.

This method is algoritmically very distinct from the others pro-
posed. Even with the performance in favor of it, the artifacts or the
stylish look can’t be overseen. We won’t pretend to fully compre-
hend the method and we will not go into further detail with it. It
is mentioned here to note that radically different approaches still
appear.

3.2.12 Bent Normals

The concept of bent normals has been used since the inception
of the term ambient occlusion [Landis 2002]. It is the average
unoccluded direction (See Figure 3.7). However, it would take a
couple of years before it first appeared in combination with screen-
space approaches [Kasyan et al. 2011; Donzallaz and Sousa 2011].
The standardAO calculation is done as usual but with the addition
of a bent normal that denotes the average unoccluded direction.
This bent normal is then saved for each pixel just as AO and used
in the following shading computations. E.g. with the Blinn Phong
model. Just as in [Ritschel et al. 2009] this allows for directed
shadows on a small-scale—what the authors call contact shadows.
This is an SSAO extension so we will not go into too much detail
about it. We include it here because it works on top of SSAO and
generates visually pleasing results.

An extension to bent normals is bent cones which basically is a
bent normal with an associated angle denoting the size of the cone
[Klehm et al. 2011]. The angle is based on the variance between
the sample directions. Having the bent cone available allows for
more complex illumination methods that can evaluate the amount
of light that a point recieves through a spherical cap (defined by the
cone). The authors suggests to use interleaved sampling in order
to reduce the noise found among the bent normals.

3.2.13 Alchemy Ambient Occlusion

Named after the article in which the method first appeared—there
is no relation to craft of the same name. The idea is to intelligently
choose a falloff function, ρ, so that some terms cancel out in Equa-
tion 2.5 [McGuire et al. 2011]. The ρ they choose is

ρ(d) =
u · d

max(u, d)2

where d is he sample distance; u is a user-specified parameter to
choose the exact shape. It should already be apparent that their
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choice of ρ implies that they use the inverse definition of AO. I.e.
ρ→ 0 and not 1 for d→∞. We will restate inverse AO function
to make the discussion easier

AO = 1− 1

π

ˆ
Ω

ρ(d)(n · ω)dω (3.6)

Inserting ρ into Equation 3.6 does not yet yield an interesting result

AO = 1− u

π

ˆ
Ω

d · (n · ω)

max(u, d)2
dω (3.7)

despite the fact that one u can be moved outside the integral. Then
the authors suggest to define the vector v = ω · d and simplify
Equation 3.7 to

AO = 1− u

π

ˆ
Ω

v · n
max(u, d)2

dω (3.8)

Furthermore, it is safe to assert that max(u, d)2 = max(u2, d2)
under the assumption that both u > 0 and d > 0. The authors also
note that v · v = |v|2 = d2 and simplify Equation 3.8 to

AO = 1− u

π

ˆ
Ω

v · n
max(u2, v · v)

dω (3.9)

All there is left to do is to use Monte Carlo integration to get a
computational formula. The authors do that along with some extra
simplifications and end up with

AO = 1− 1

N

N∑
n=1

max(vn · n+ β, 0)

vn · vn + ε
(3.10)

where N is the number of samples; vn is a given sample vector
(sn−p); β is a parameter that controls the extent of the occlusion;
ε is a small number to avoid division with 0. Note that the max
function in the denominator has been replaced, since the function
of u2 really was to avoid division with 0. Additionally, the dot
product in the nominator has been clamped to 0 because sample
vectors vn may unintentionally go below the hemisphere. This is
an artifact of the sample generation which is outlined next.

The authors suggest an interesting approach to sample generation;
they aim to limit the sampling to occluders only. This contrasts
the common strategy of volumetric methods were samples can be
either visible or occluded. The authors proposal is therefore more
akin to [Bavoil et al. 2008a] where everything below a the horizon
angle h is deemed occluding.

The authors choose samples sn in a disk around p in screen coor-
dinates as done in [Loos and Sloan 2010]. They then project the
samples onto the scene surface as done in [Bavoil et al. 2008a].
Now they can construct the sample vectors, vn as sn−p. See Fig-
ure 3.10 for reference. This is all the information that is needed for
Equation 3.10. Note that samples below the hemisphere gets auto-
matically rejected by the max function in the nominator of Equa-
tion 3.10.

They also present the interesting idea to vary the number of sam-
ples with distance such that background objects use fewer samples.
This improves performance since fewer samples are used overall.

3.2.14 A Separable Approach

The core idea is to separate the AO computation into a vertical and
horizontal pass [Huang et al. 2011]. This presents an additional
layer of approximation to a generic SSAO algorithm. There is a
strong analogy with separable blur filters where the blur kernel
is first evaluated horizontally and subsequentially vertically. The

n

v
v

v

v
p

Figure 3.8: Approximation of AO [McGuire et al. 2011]. The
green and red line segments are the contributing and rejected sam-
ples, respectively. The sample vectors, v, have been drawn for the
contributing samples. Notice how each sample has been projected
onto the scene surface.

benefit is improved performance due to less samples overall. We
will return to separable blurs later.

In the basic form presented above the method does not deal with
diagonally aligned occlusion. E.g. a flagpole will not have a round
shadow at its base but a cross. To circumvent this problem, the au-
thors propose to randomly rotate the sample frame for each pixel.
I.e. the two “horizontal” and “vertical” directions are still orthog-
onal but they are rotated together relative to the image frame. This
effectively hides the areforementioned “cross” artifacts.

It should be noted that a blur phase is needed to hide the jitter
introduced by the randomly rotated sample frames.

3.2.15 Another Horizon-Based Approach

Instead of attempting to approximate the precise horizon angle h
(e.g. with ray-marching [Bavoil et al. 2008a]), many sample angles
are sampled and averaged [Mittring 2012]. As already noted, there
is a strong parallel to the aforementioned angle-based algorithm.
This method can be seen as a late variant of the earlier algorithm.

A set of paired sample positions 〈s1, s2〉n are found around p in
screen coordinates. Paired in this context mains that each pair of
sample positions are symmetrically positioned around p. Each pair
is projected into the scene by setting sz = depth(sxy) for both
samples s1 and s2 in the pair. The angle of the free horizon can
now be estimated for the pair as the angle between the vectors s1−
p and s2−p. The free horizon angle is approxmiated as the mean
angle found from the pairs. The normal can be used to clamp each
s− p vector to the tangent plane.

3.2.16 A Scalable Approach

The authors tune their previous method [McGuire et al. 2011]
to scale with high resolutions as well as large sampling radii
[McGuire et al. 2012; Bukowski et al. 2012].

The first improvement is to cut on memory bandwidth by only re-
lying on the depth buffer. From the depth buffer, positions and
normals can be derived—the latter via spatial derivatives. Another
key change is to use a mipmapped depth buffer similar to the work
done in [Hoang and Low 2010]. This improves the performance of
texture fetches from the depth buffer which enables the algorithm
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Figure 3.9: Approximation of AO [Mittring 2012]. The sample
pair is denoted by rectangles. Together the samples approximate
the angle of the free horizon, h. The sideview denotes the situation
for one angle θ around the view vector.

to scale with large sample radii. The fetched mipmap-level de-
pends on how far s is from p such that distant samples fetch from
coarser depth buffer levels. I.e. fine details are preserved around
p where the high-resolution depth buffer is sampled while long-
range occlusion is also taken into account albeit through coarse
depth buffer levels.

It should be noted that in both [Hoang and Low 2010] and [Hoang
and Low 2012] the output AO is also calculated at multiple reso-
lutions corresponding to the resolutions of the input buffers. Then
AO is subsequently combined in a later pass. In [McGuire et al.
2012], AO is always calculated at the highest resolution even
though it uses a mipmapped depth buffer.

The authors also provide a lot of technical details to improve per-
formance on contemporary hardware. These are very low-level and
I won’t go into details here.

3.3 Overview

The previous section has uncovered a vast number of approaches to
AO with detailed explanations to many of them. We have produced
an overview in Table 1. The table lists the reference that presents or
explains the method, the name of the method, the input the method
requires (as denoted in the reference), and a non-exhausting list of
industry uses (as denoted in the reference). Each table entry has an
associated note that explains either the key points of the method or
details interesting ideas from the reference.
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Table 1: Overview of Methods

Reference Method Input Industry Use
[Pharr and Fernando 2005] Dynamic AO Polygon mesh decompositioned

into disk elements
Not really a screen-space approach. Here because it is the first (near) real-time AO method for rasterized scenes.

[Luft et al. 2006] Unsharp Masking Depth buffer
Apply a filter kernel to the depth buffer. The result is not a direct AO computation but a post-process effect that
mimics it.

[Mittring 2007a; Mittring
2007b; Dachsbacher and Kautz
2009]

CryENGINE 2 SSAO Depth buffer Crysis (2007)

Approximate AO as the ratio of visible to occluded nearby sample points s. Samples are chosen at randomly in a
sphere around p in screen coordinates. In [Mittring 2007b] the authors further reveal that a smart blurring scheme
(depending on the depth buffer) is needed to reduce noise. Additionally, they suggest that the sample distribution (the
sphere radius) should be scaled with the distance into the scene.

[Shanmugam and Arikan 2007] Image-space approach for
high-frequency AO

Depth buffer
Normal buffer

Approximate AO by averaging the occlusion of nearby surfaces represented by proxy spheres.

[Nguyen 2007] Improved dynamic AO Polygon mesh decompositioned
into disk elements

An improvement over the ealier method found in [Pharr and Fernando 2005]. Smooths the result which is a trait that is
also found in many screen-space methods.

[Bavoil et al. 2008a; Bavoil et al.
2008b; Bavoil and Sainz 2008;
Dachsbacher and Kautz 2009]

HBAO Depth buffer
Normal buffer

Approximate AO by the size of the unoccluded horizon in the hemisphere defined by p and n. The method
ray-marches the depth buffer to get the horizon estimates. Furthermore, the authors suggests to jitter the step size of
the ray-marching and choose directions randomly to avoid systematic noise.

[Dimitrov et al. 2008; Sainz
2008]

HSAO Depth Buffer
Normal Buffer

Very similar to [Bavoil et al. 2008a]. The only notable difference is that the rays are traced in eye coordinates and then
projected into screen coordinates.

[Filion and McNaughton 2008] Starcraft II SSAO Depth Buffer
(Normal buffer)

Starcraft II (2010)

Similar to [Mittring 2007a] though the authors claim to have come up with the method on their own. The differences
are in the details. Most notable is that point samples are found in world coordinates and not screen coordinates.

[Ritschel et al. 2009;
Dachsbacher and Kautz 2009]

SSDO (Screen Space Directional
Occlusion)

Depth Buffer
Normal buffer

SSDO is not another take on how to calculate ambient occlusion in screen-space. It is an extension of the core SSAO
idea. It allows for colored and directed shadows in the result. Furthermore, SSDO has an optional second pass that
approximates one diffuse indirect bounce of light.

[Bavoil and Sainz 2009] Multi-Layer Dual-Resolution
SSAO

[Any required by the basis
method]

This paper presents enhancement to any other SSAO algorithm. The authors propose to use depth peeling and/or
multiple-view depth buffers. They also suggests to calculate AO at different resolutions to get better performance.

[Dachsbacher and Kautz 2009]
A good presentation of the Dynamic AO, CryENGINE2 SSAO, HBAO and SSDO. While the authors do not present any
new information about the various methods they do provide a good overview. The presentation is a good starting point
when learning about SSAO (and global illumination).

[Smedberg and Weight 2009] TSSAO (Temporal SSAO) [Any required by the basis
method]
AO buffer (from previous frame)

Gears of War 2

Presents the idea of re-using AO computations of previous frames in order to smooth out the overall result.

[Mattausch et al. 2010; Scherzer
et al. 2010]

TSSAO (Temporal SSAO) [Any required by the basis
method]
AO buffer (from previous frame)

The same method as presented in [Smedberg and Weight 2009] but developed independently. The authors also suggest
to use temporal refinement, which involves re-using actual samples and not just blending AO results between frames.
Reference Method Input Industry Use

21



3.3 Overview 3 ANALYSIS

Reference Method Input Industry Use
[Song et al. 2010] HBAO using Mixture-Sampling Depth Buffer

Normal Buffer
This is a combination of the methods found in [Bavoil et al. 2008a] and [Shanmugam and Arikan 2007]. The first
hybrid method.

[Loos and Sloan 2010] VO (Volumetric Obscurance) Depth Buffer
(Normal Buffer)

The authors define the term Volumetric Obscurance (VO) and use it to find AO. Simply put, they use the ratio of
visible to occluded volume around p. Another new idea is to combine the AO calculations of a small sphere and a
large sample sphere. This technique captures both low-scale as well as broad-scale details.

[Ownby et al. 2010] VO (Volumetric Obscurance) Depth Buffer
(Normal Buffer)

Toy Story 3 (Video
Game, 2010)

Based on the line integrals of [Loos and Sloan 2010]. The authors goes into details of how to choose effective sample
positions s using randomization and rotation. They also propose to use paired sample locations (symmetric around p)
to better estimate missing sample information due to the rough scene approximation given by the depth buffer.

[Kaplanyan 2010] [Production Integration] Crysis 2 (2011)
Though the authors present no new methods they show that it is possible to combine basic methods with extensions in
a production. They use the volumetric obscurance method [Loos and Sloan 2010] in combination with temporal
refinement [Mattausch et al. 2010].
It is interesting to note that they still suggest calcualting p at half-resolution and blurring the result.

[Hoang and Low 2010] MSSAO [Any required by the basis
method]
Mipmaps

The same idea of using multiple resolutions as in [Bavoil and Sainz 2009] but taken a step further.

[Sourimant et al. 2011] Poisson Disk Ray-Marched AO Depth Buffer
Normal Buffer

Introduces the concept of Poisson distributed samples and presents a method for computing AO using combinations
of previous methods.

[Aksoy and Phaneuf 2011] Poisson Disk Projected AO Depth Buffer
Normal Buffer

EA Sports MMA
(2010)

Another approach involving Poisson distributed samples though the authors use a different AO computation.
Similarly to[Loos and Sloan 2010], the authors suggest to use two hemispheres with different radii to capture both
fine-scale and broad-scale details.

[Hattori et al. 2010; Hattori
et al. 2011]

Curvature-based AO Depth Buffer
Normal Buffer

An unique method that mimics AO by analyzing the scene curvature.

[White and Barré-Brisebois
2011]

[Production Integration] Battlefield 3 (2011)
Need For Speed:
The Run (2011)

A presentation of how AO effects fit into a production. The authors use [Bavoil et al. 2008a] for the best quality and
[Loos and Sloan 2010] for a performant alternative that runs interactively on consoles. They go into details on how to
tweak performance out of the latter method. This is mostly low-level and technical tricks.

[Kasyan et al. 2011; Donzallaz
and Sousa 2011]

[Extension] [Any required by the basis
method]

Crysis 2 (2011)

Introduces the concept of bent normals into the SSAO domain.

[McGuire et al. 2011] Alchemy AO (Ambient
Obscurance)

Depth Buffer
Normal Buffer

A unique method that uses a carefully chosen ρ function to get a simple formula for AO.

[Huang et al. 2011] [Extension] [Any required by the basis
method]

An extension to a generic AO algorithm that splits the computations into two passes like a separable blur filter.

[Klehm et al. 2011] [Extension] [Any required by the basis
method]

Extends the concept of bent normals to bent cones.

[Ritschel et al. 2012] [Overview]
Provides a good, short overview of different ambient occlusion methods (screen space and not). We have used it to
find many of the previous methods. However, the authors do not explain the methods in any detail at all. They do
roughly categorizone them based on whether they approximate AO by projecting proxy geometry, finding unoccluded
volume, or finding unoccluded directions.
Reference Method Input Industry Use
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Reference Method Input Industry Use
[Hoang and Low 2012] MSSAO [Any required by the basis

method]
Mipmaps

Similar to the earlier work by the same authors in [Hoang and Low 2010]. However this time, each pass is explained
in detail and with mathematical motivation.

[Mittring 2012] Unreal Engine 4 SSAO Depth Buffer
(Normal Buffer)

This method is based on finding the free angle of the free horizon as in [Bavoil et al. 2008a]. However, it is differs in
that it doesn’t use ray-marching but instead sample pairs projected onto the scene surface.

[McGuire et al. 2012; Bukowski
et al. 2012]

SAO (Scalable Ambient
Obscurance)

Depth Buffer

The method is closely based on the earlier work of the same authors presented in [McGuire et al. 2011]. The authors
tune their previous method to scale with high resolutions as well as large sampling radii.
Reference Method Input Industry Use
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4 Design

The reader should now have a general idea of the different ap-
proaches to SSAO. We will now outline some common observa-
tions and present a framework for the comparison.

4.1 Common Observations

4.1.1 Depth Buffer Discontinuities

In the previous section we have thus far assumed that the depth
buffer is a good scene approximation. This is not always the case
as seen in Figure 4.1. The depth buffer only stores the frontmost
surfaces and all other surface information is lost. This may result
in erroneous AO computations. Take for instance the point p in
Figure 4.1 which is in top of a bump and should this be fully visi-
ble. However, the floating object to its right causes a sharp rise in
the depth buffer. Consequently, p may be deemed partly occluded
by some the previous algorithms. The resulting artificat is dark
halos along depth discontinuities.

Falloff Function The easiest remedy is to include the falloff
function ρ(d) in the AO approximation. Foreground and back-
ground objects tend to be separate by quite a distance; certainly
over dmax for the most part. With an appropriately set dmax, any
samples to the left of point p in Figure 4.1 will be treated as vis-
ible. There exists a delicate balance when setting dmax that can
only be found empirically. After all, ρ was introduced with aes-
thetical motivation [Zhukov et al. 1998]. However, this is not a
perfect solution. Sometimes samples are occluded by a surface
hidden from the view of the depth buffer. In this case it is wrong
to treat the sample as visible.

Rejection A simpler but related alternative is to reject samples
whose depth value sd are too far from pd. That is, we measure the
difference pd − sd and not the distance |s− p|. This can be com-
putationally cheaper for methods that calculates the former differ-
ence anyways but not the latter distance. Simply discarding like
this samples may lead to undersampling [Ownby et al. 2010]. E.g.
if a most samples are beyond the threshold then few remain for the
actual AO calculation—maybe too few.

Depth Layers and Multiple Views There is also the idea to use a
layered depth buffer (or depth peeling) [Ritschel et al. 2009; Bavoil
and Sainz 2009]. Each layer starts at an increasing distance into the
scene and hopes to capture surfaces that are hidden by the front-
most layers. If such a layer was available between the floating ob-
ject and the ground in Figure 4.1, then there wouldn’t be a problem.
Alternatively, multiple view angles can be used to generate depth
buffers from different perspectives [Ritschel et al. 2009]. Hope-
fully, a surface hidden from one angle may be visible from another
and thereby the problem disappears. Both the ideas of depth lay-
ers and multiple viewing angles will eat into the memory budget
which may hurt performance. Additionally, each method must in-
corporate the computations required to facilitate the extra scene
information.

Paired Sampling Lastly, is the idea of using sample pairs to in-
crease the changes to recover missing depth information [Ownby
et al. 2010]. This approach uses the assumption that surfaces are
flat on average. For many scenes, this is not an unreasonable as-
sumption. If one sample in a pair is rejected (say by the differ-
ence pd − sd) then its partner may be used to reconstruct the hid-
den information (See Figure 4.2). In the figure, the green sample
has been rotated around p and reconstructed the missing informa-
tion. This approach lends itself naturally to methods that use paired

p

Figure 4.1: Problems encountered with a scene represented as a
depth buffer. The real scene’s surface is the dashed line and the
shaded bars are the depth buffer representation. Notice that only
the frontmost (towards the eye) surfaces are stored in the depth
buffer.

p

Figure 4.2: Depth discontinuities resolved with paired samples
[Ownby et al. 2010]. The red and green rectangles are the paired
samples projected onto the depth buffer. The orange sample is the
reconstructed position that the red sample should have had. Note
the assumption of a flat surface.

samples by default. Furthermore, many SSAO methods can be ex-
tended to use paired sampling.

Comparison All of the above remidies for depth buffer disconti-
nuities can theoretically be applied between many of the methods.
However, each method lends itself more naturally to a specific rem-
edy either by the governing model or by the data it computes. How
each method treats depth buffer discontinuities is an interesting
variable for comparison. The chosen approach greatly affects the
resulting image but also the computation time.

Note that the definition of the falloff function ρ is vague and thus a
potential variable itself for the methods that use it. We have chosen
to go with the definitions that recommended by the papers behind
each method.

4.1.2 Guard Bands

As we have previously mentioned, some authors recommend the
use of a guard band to artifacts near the screen edges [Bavoil and
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Sainz 2009]. However, this comes at a performance cost since
more pixels are needed to be rendered. More interesting is it that
the use of guard bands are never mentioned in production use cases
(as far as we can see) but only in academic papers. We ponder that
the reason for this is that the edge artifacts are not noticed since the
focus is mostly on the center of the screen. Consequently, we have
chosen not to use guard bands. This variable will therefore not be
in the comparison.

4.1.3 Memory Budget Impact

When the study initally began, we assumed that each method
would have different memory requirements. However, it turns out
that all methods can be implemented with the depth buffer as the
only input. The reason is that positions can be reconstructed from
depth [Mittring 2007a; Kasyan et al. 2011] and normals can be re-
construced from positions [McGuire et al. 2012; Bukowski et al.
2012]. Consequently, there is potentially no difference in mem-
ory requirements between the methods. It should be noted that
the reconstruction does come with a slight performance hit though
nothing major on modern hardware. Furthermore, the quality of re-
constructed normals is debatable [Bukowski et al. 2012] and some
authors prefer the real normals. Nevertheless, we have chosen to
keep the memory budget aspect out of the comparison.

4.1.4 Blurring

A key point in the AO pipeline of Figure 3.2b is the use of a blur
to remove high-frequency noise introduced by random sampling.
All of the aforementioned SSAO methods (unless explicitly noted
in the analysis) recommend a blurring pass. That is not to say,
that every method absolutely need one. Some methods can in-
deed produce quality results if a high enough number of samples
N is used. The problem is that performance goes down quickly
when N increases. However, each method scales differently and
thus this becomes an interesting point of comparison. We will at-
tempt to discover how each selected method respond to skipping
the blur pass entirely while maintaining quality output. We expect
that some will suffer more than others in terms of performance.

The Blur Itself Common to all recommendations is that the blur
must be geometry-aware. That is, it must not blur accross unrelated
surfaces. Some authors suggest to use the depth buffer [Mittring
2007a] and others propose to additionally use the surface normals
[Filion and McNaughton 2008]. However, the goal of all methods
seem to be the same: Remove the high frequency noise while main-
taining surface definition. In light of this, we have chosen to use
the same blur pass for all methods. This reduces the dimensions
of the comparison but more importantly focuses the discussion on
the SSAO details. That being said, some methods require broader
blurs than others. This will remain as a factor in the comparison.

We use a separable blur filter that uses both depth and normal in-
formation to maintain surface definition. This should ensure that
all methods retrieve a high-quality blur. See the implementation
section for more details.

4.1.5 Noise and Sample Patterns

It is inherent to all the methods that the choice of sample pattern
will be reflected in the result. When a fixed pattern is used, banding
occurs. When a random pattern is used, high frequency noise is
added [Mittring 2007a]. Generally speaking, authors prefer the
high frequency noise to banding artifacts. Each method also has a
recommended sample pattern—often strongly linked with the way
the method works. Thus it is infeasible switch sample patterns
between methods. Consequently, sample patterns will not be a
variable in the comparison.

4.1.6 Self-Occlusion

Some methods use samples distributed in a sphere around the po-
sition in question ([Mittring 2007a] and [Loos and Sloan 2010]).
The problem is that even on a flat surface half of the samples are
expected to be below the surface (See Figures 3.3 and 3.6). This
is known as self-occlusion. Methods that self-occlude have a very
distinct, almost stylish look. The remedy is simply to transform
the AO approximation by parameters in order to remove the look.
Parameters will be presented shortly.

If we recall the original definition of AO (Equation 2.5) we will
note that it uses a hemisphere to gather the samples. Methods that
follow this definition will self-occlude.

4.1.7 Varying the Resolution

Many authors suggests to calculate AO at a lower resolution for
performance reasons and then rescale it to fit the screen [Bavoil
and Sainz 2008; Bavoil et al. 2008b; Smedberg and Weight 2009;
Bavoil and Sainz 2009]. Other authors make a dedicated and in-
volved effort to compute AO at multiple resolutions [Bavoil and
Sainz 2009; Hoang and Low 2010; Hoang and Low 2012; McGuire
et al. 2012]. Some are smart about the rescaling and resamplesAO
when precision is lacking [Bavoil and Sainz 2009] while others fa-
vor performance and skips the resampling [Smedberg and Weight
2009].

We have chosen to always compute AO at one specific resolution
(800×800 pixels) to leave this factor out of the comparison. It puts
every approach on equal footing so differences in quality can’t be
attributed to rescaling.

4.1.8 Scale

A prime variable for the comparison is the scale at which the AO
effect applies. All methods have a radius of influence or similar
either to control the radius of a sample sphere or sample disk. In
Equation 2.5 it is implicitly defined in the falloff function ρ by
the parameter dmax. The ray-traced reference scales as expected.
It will be interesting to see how the candidate methods scale in
comparison.

Number of Samples The number of samples N used in solving
the AO integral is also a good candidate variable for the compari-
son. Each method scales differently with N but common for them
all is that they get slow for large N . We will attempt to find some
good compromises. This will be explained in a later chapter along
the comparison framework.

4.1.9 Computational Performance

Performance is profiled as the time of execution in milliseconds
(hopefully). Such profiling is easily performed in the software it-
self. It is important, however, that the application as a whole is not
profiled. Only the shader passes computing AO and the associated
blurs are relevant.

We use an Nvidia GeForce 260 GTX GPU during profiling. This
card came around 2008-2009 and thus it is somewhat dated by
todays standards. However, this ensures that if our implementation
performs well in our tests then they ought to perform even better
using more recent hardware.

Industry Average Render Budget There doesn’t exist a stan-
dard reference frame for how long an AO computation should take.
However, we can compute an average from the render budgets used
in the industry:
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• AO Computation: 1.2 ms [Kaplanyan 2010].

• AO Computation and GI1: 2 ms [Donzallaz and Sousa 2011].

• AO Computation and Blur): 2-4 ms [McGuire et al. 2011].

– Between 3-5 ms when targeting multiple platforms.

Unfortunately, two the render budgets we found (above) are not
purely for AO computations. Also, the authors did only mention
the GPU used in some of the cases. However, we think it is fair
to choose 2 ms based on the above information. The performance
comparison is supposed to be inter-method anyhow. The industry’s
render budget is only included as a reference.

4.1.10 Quality

Quality is assessed by a manual visual comparison. We have pro-
duced a ray-traced reference which is used as the golden standard.
We aim to tweak each method to resemble the reference as closely
as possible.

4.1.11 Reference Scene

It is important to use the same scene (virtual world) and camera
position when doing the comparison. The versed reader may have
noticed that we use the Sponza model developed by Crytek. It is
the slightly modified version as found on http://graphics.
cs.williams.edu/data/meshes.xml. The reference will
be rendered using the existing ray-tracing implementation in the
Mental Ray renderer. We have consulted the documentation and
noted that Mental Ray can in fact be configured to implement equa-
tion 2.5. We used 64 rays per pixel in the full hemisphere with a
linear falloff function, ρ.

We use two different camera positions for the comparisons. One
that looks down along the hall, and one that focuses on the lion
head on the stone wall. The former tests the methods in a setting
with many depth discontinuities (pillars, curtains) while the latter
has a focus on small-scale details (curvature and creases of the lion
head). This will also be a variable for comparison. That is, whether
the method is best at captuing large-scale effects, low-scale effects,
or both. This comparison parameter was proposed in [McGuire
et al. 2011].

4.1.12 Parameters

Each method has its own set of parameters that can be tweaked
to the users liking. Sometimes the governing AO model does not
cover all the details which gives the implementer a certain degree
of freedom. However, there exists a set of parameters to tweak the
result that shared between all of the methods. They are applied via
a post-processing step as

AO′(AO) = (b · (AO + a))c

where a, b, and c are user-defined. b and c can be used to con-
trol the brigthness and contrast of the AO computation. a can be
used to remedy self-occlusion (see above) by simply adding an ex-
pected 0.5 occlusion amount to the result (a = 0.5) and clamp.
This removes the stylish look that self-occluding methods other-
wise produce.

4.2 Candidate Methods

The methods chosen for comparison are in Figure 4.3. They are
meant to represent SSAO methods that differ both algorithmically

1Global Illumination

and chronologically. The former enables us to cover different gov-
erning AO approximations. The latter lets us observe how the
early methods have influenced the later methods and the general
trends.

Furthermore, we have found that the methods can be categorized
based on a combination ofAO approximation and how they solve
the integral. This allows us to quickly assess each methods’ algo-
rithmic basis. Thus methods from differenct categories (which we
will uncover below) should be equally represented.

4.2.1 Categorization of Methods

Point Sampled AO These groups of methods are key to all
SSAO approaches because they were the first to popularize the
use of SSAO. They are based on intuitive reasoning and have seen
much industry use. Even recent video game titles consoles have
used them as their basic method [Smedberg and Weight 2009]. The
basic premise is to probe sample locations in a volume around each
point in quest and use the ratio of visible to occluded samples as
the AO approximation. As far as we can see, the two most pop-
ular candidates are [Mittring 2007a] and [Filion and McNaughton
2008] which both keep getting mentions in recent SSAO-related
papers [Hoang and Low 2012]. Therefore, we have chosen to im-
plement both (Figures 4.3a and 4.3b). Between them, there are
some key differences which vastly affect the result. Therefore, it is
relevant to include both in the study.

Horizon-Based AO The next iteration of popular AO approxi-
mations. The horizon-based AO methods take an algorithmically
different approach altogether and yet produce a convincing result.
They aim to find the angle of the free horizon instead of directly
probing samples for visibility. Therefore, they are interesting to
study and two candidates have been included in the comparison.
The first method [Bavoil et al. 2008a] presented the horizon-based
approach and the second rely on the same concept but is imple-
mented differently [Mittring 2012]. As seen in Figures 4.3c and
4.3f, the methods are also greatly split by time. It will be interest-
ing to find whether the later method can be seen as an improvement
of the earlier method—if only in some variables of the comparison.

[Mittring 2012] lends itself so easily to using paired samples to
solve depth discontinuities [Ownby et al. 2010]. Therefore, we
have chosen to add this feature to our implementation (see next
chapter). This choice, however, makes the method differ from the
one proposed in the reference if only ever so slightly. We argue
that the resulting comparison only becomes more interesting with
the added variation.

Volumetric AO (Line Sampled AO) Technically speaking, the
point sampled methods also belong to this category as mentioned
before. However, we choose to split them into two; the first one al-
ready being mentioned and the other one explained here. With the
inception of the VO term also came the idea to use line sampling
[Loos and Sloan 2010] to solve the integral as opposed to point
sampling (Figure 4.3d). Therefore, the two terms have become
synonymous in the literature and we follow that way of thinking
here. Consequently, this category is for methods that solve the in-
tegral using line samples. The name of the category is chosen to
be compatible with the existing literature.

The prominent VO method [Loos and Sloan 2010] has seen pro-
duction use [Kaplanyan 2010] and some authors present significant
advantages in terms of both performace and quality over the point
sampling counterparts. It will be interesting to see if this is also
reflected in our comparison.

This method is also a good candidate for using paired sampling to
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solve depth discontinuities. In fact, the original paper on the idea
used the VO method as basis [Ownby et al. 2010].

Alchemy AO We have chosen to create a category solely for the
alchemy method [McGuire et al. 2011] (See Figure 4.3e). On some
terms it shares many similarities with both the point sampling and
the horizon-based approaches and yet it seems entirely different
when put together. One could argue that it is in fact a hybrid but we
think that the inclusion of an intelligently chosen ρ function and the
reduction of terms in Equation 3.10 is enough to make it unique. It
also fits nicely on the timeline between the other methods.

4.2.2 Common Attributes

Common to all the candidate methods is that they require uni-
formly distributed unit vectors to implement their sample patterns.
I.e. every method can be supplied the same random texture (See
Figure 3.2b).

The methods that require normals will have them explicitly pro-
vided by the normal buffer. So in our overall design of an SSAO
algorithm, the dashed line in Figure 3.2b is used.

4.3 Comparison Framework

We have presented variables to use in the comparison as well as the
candidate method in the sections above. This section will combine
the variables and candidates into a framework that will be the basis
of the comparison. I.e. the methodology of the comparison.

4.3.1 Configurations

We will make two different configurations for each candidate
method tuned for two different purposes.

Performance The first configuration is intended to showcase
how performant the method can be. Some level of quality must be
maintained and we aim to find a good compromise in visual qual-
ity that is comparable between the methods. This is a task prone
to subjective opinion. We will provide sample renders so that the
reader can apply his or her own conclusions as well.

Quality The second configuration is on quality. We aim here
to find the set of settings that aligns the result with the reference
image. We also intend to disable the blur pass for this configuration
in order to highlight deficiencies that are inherent to the method.
To keep things reasonable, we will aim to find the point where
the AO term converges. That is, we will seek the set of settings
where increasing parameters further will only return diminishing
results. Again, this is a task prone to subjective opinion and we
will provide sample renders for the reader to inspect.

4.3.2 Scalability

We will then test the scalability of the method by varying the sam-
pling radius while keeping the other parameters constant. This in-
cludes not changing the number of samples. The results will show
how each method scales in terms of quality and performance.

We will then conduct the same experiment but this time increase
the sampling radius along with the number of samples as well. The
aim is to find a relation between the two variables.

4.3.3 Views

When relevant, the comparisons will be done for two different
views (camera angles) of the scene as discussed in section 4.1.11.

4.3.4 Overview

We will list the comparison variables here to provide an overview
for the reader:

• Sampling radius (world-space units).

• Number of samples.

• Parameters a, b, and c.

• Blur kernel size (pixels)

• Performance (milliseconds)

• Quality

Other variables (e.g. the sample distribution) are either inherent to
the each method or have been left out of the comparison to keep
the complexity reasonable.
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with paired samples
[Mittring 2012].

Figure 4.3: The selected SSAO methods.
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5 Implementation

This section will explain how each of the candidate methods are
translated into working shaders. We will also explain the blur
shader that is shared between all the methods.

5.1 Overall

The application in which the SSAO methods are implemented is
written in C++. It is project that has been used earlier by one of
the authors of this paper for other real-time rendering experiments.
It is freely available and can be found on GitHub at https:
//github.com/frederikaalund/sfj. It is based on stan-
dard implementations, notably the OpenGL API. Consequently,
the SSAO methods are implemented as shaders in the associated
shading language, GLSL. The shaders are also available at the
aforementioned GitHub address. They can also be found in full
length in the appendix of this report.

5.1.1 Prefixes

We use the coordinate (space) abbreviations found in section 2.5.1
as a prefix to variables. This makes it easier to see which space
the associated variable belongs to. E.g. vec3 wc_position would be a
position in World Coordinates (WC) whereas vec2 tc_sample denotes
the a sample position in Texture Coordinates (TC).

5.2 The Candidate Methods

Many of the candidate methods share similar steps. We will ex-
plain how these steps are implemented when they first appear
and refer back to previous explanations when needed. This way,
we won’t repeat ourselves. The discussion is also limited to the
AO fragment shaders since the accompanying vertex shaders are
trival—they just forward a full-screen quad. We will not present
the full shader code here but only relevant snippets. Please refer to
the appendix for the full source code of each shader.

5.2.1 [Mittring 2007a]

The method in [Mittring 2007a] (Figure 4.3a) presents some chal-
lenges which we will conquer in turn. We will be extra detailed
when describing this method since it is the first and a lot of basics
have to be laid down. Subsequent descriptions will only cover key
parts.

Random Vectors Shaders follow the SPMD principle and thus
have real difficulty generating random numbers different for each
data set. We remedy the situation by providing pre-computed ran-
dom vectors in a texture. The vectors are distributed in a uni-
formly in a circle (generated with rejection sampling). They are
then subsequently converted to the [0; 1]3 range to preserve preci-
sion. Therefore, when we read a random direction from the texture,
we must remember to scale it back into the [−1; 1]3 range

vec3 random_direct ion = t e x t u r e ( random_texture ,
tc_random_texture ) . xyz ;

random_di rect ion = normal ize ( random_direct ion ∗ 2.0 − 1 .0 ) ;

Sampling The sampling itself works in a for-loop

for ( i n t i = 0 ; i < samples ; ++ i )
{

. . . / / Use sample i
}

where samples is the number of samples used. Every sample re-
quires a random direction. That is, we need samples × pixels
random directions. The random texture take up way too much
memory if it were to have that many entries. Instead, the authors
of the method propose to reflect each sample’s random direction in
the plane defined by a per-fragment random direction.

vec3 sample_random_direct ion = / / Fetch rand vec to r based on
i

sample_random_direct ion = sample_random_direct ion ∗ 2.0 −
1 . 0 ;

sample_random_direct ion = r e f l e c t ( sample_random_direct ion ,
random_di rect ion ) ;

where the reflect function is already part of the GLSL speci-
fication. Now we proceed to use the random direction to sam-
ple a sphere in screen coordinates. That should rather be tex-
ture coordinates as they are the ones the buffer sampler function
expects. Remember that the difference between screen coordi-
nates (range [0;width], [0;height], [0; 1]) and texture coordinates
(range [0; 1]3) is just a question about scale. The sample position
is found as follows

vec3 tc_sample_pos = vec3 ( tc_depths . xy , scene_depth )
+ vec3 ( sample_random_direct ion . xy ∗

pro jec t ion_sca le_xy , sample_random_direct ion . z ∗
scene_depth ∗ pro jec t i on_sca le_z ) ∗ rad ius ;

where the projection_scale factors are there because the sample
radius is given in world coordinates. I.e. the sample radius must
be scaled to account for projection. It is done as follows

f l o a t pro jec t i on_sca le_xy = 1.0 / ec_depth_negated ;
f l o a t pro jec t i on_sca le_z = 100.0 / z_ fa r ∗

pro jec t i on_sca le_xy ;

where ec_depth_negated is the depth read from the depth buffer.
It is negated because eye coordinates have the z-axis pointing out
of the screen.

Now we have a sample position and are ready to find the actual
depth, sd, of the surface above or below it (See Figure 3.3). It can
be found by a read from the depth buffer

f l o a t sample_depth = t e x t u r e ( depths , tc_sample_pos . xy ) . x ;

What remains is simply to make the test of V ′ and add the contri-
bution

ambient_occlus ion . a += f l o a t ( sample_depth > tc_sample_pos . z ) ;

When all samples are gathered, and the execution returns from the
for loop, then the sum of contributions is divided by the number of
samples

ambient_occlus ion . a /= f l o a t ( samples ) ;

just as it is done in Equation 3.1.

5.2.2 [Filion and McNaughton 2008]

This method shares many of the same traits of the above. One
difference is that it finds samples in the hemisphere aound p and
not in a circle (See Figure 3.4). This is achieved by mirroring the
samples of the negative hemisphere around the plane defined by
the surface normal into the positive hemisphere.

sample_random_direct ion = faceforward ( sample_random_direct ion
, sample_random_direct ion , −wc_normal ) ;
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where the faceforward function is part of the GLSL specifica-
tion. The observant reader may have noticed the other key differ-
ence already: samples are chosen in world coordinates. However,
this implies that each sample must be projected into texture co-
ordinates for the subsequent depth buffer look-up. It is done by
mimicking the OpenGL transformation pipeline

vec3 wc_sample = wc_pos i t ion + sample_random_direct ion ∗
rad ius ;

vec3 ec_sample = ( v iew_matr ix ∗ vec4 ( wc_sample , 1 .0 ) ) . xyz ;
vec4 cc_sample = v iew_pro jec t i on_mat r i x ∗ vec4 ( wc_sample ,

1 .0 ) ;
vec3 ndc_sample = cc_sample . xyz / cc_sample .w;
vec2 tc_sample = ( ndc_sample . xy + vec2 ( 1 . 0 ) ) ∗ 0 . 5 ;

where our prefix notation comes to good use. We also implement
this method with a falloff function ρ as follows

f l o a t rho = clamp ( ( dep th_d i f fe rence − rad ius ) /
depth_d i f fe rence , 0 .0 , 1 .0 ) ;

ambient_occlus ion . a += rho ;

We note that it would be easy to integrate the concept of bent nor-
mals [Klehm et al. 2011] now as

bent_normal += normal ize ( sample_random_direct ion ) ∗ rho ;

though we don’t use this in the actual implementation.

5.2.3 [Bavoil et al. 2008a]

In this case, the number of samples refer to the number of direc-
tions in which the algorithm marches along a ray. When choosing
an angle θ around the view vector, we use a random direction as be-
fore but simply discard the z-coordinate. I.e. we don’t first choose
an angle and then convert it to a direction but simply use one of the
random direction vectors up front. The algorithm then proceeds to
find the increments in which it marches along the ray from p in
direction θ.

const i n t steps = 6;
vec2 tc_s tep_s ize = tc_sample_d i rec t ion ∗ pro jec ted_rad ius /

f l o a t ( steps ) ;
vec2 ec_step_size = tc_sample_d i rec t ion ∗ rad ius / f l o a t (

steps ) ;

We found that 6 steps is good enough in our case. This is similar
to what the original authors found [Bavoil and Sainz 2008]. Note
that we must maintain two step increments: One for texture co-
ordinates and one for eye coordinates. Now the tangent must be
reconstructed in eye coordinates. This is similar to how you would
reconstruct a normal from position information.

We are now ready to begin the ray-marching. Note that we are
never working directly with angle values α in radians but instead
with tan(α) and sin(α) directly along with conversion functions
tan_to_sin, etc. This saves many computations that would other-
wise be spent evaluating expensive tan and sin functions. The ray
marching is nested within the first for loop (over angles θ) as

f l o a t tan_tangent_angle = ec_tangent . z / leng th ( ec_tangent . xy
) + tan ( b ias ) ;

f l o a t tan_hor izon_angle = tan_tangent_angle ;
f l o a t s in_hor izon_angle = tan_ to_s in ( tan_hor izon_angle ) ;

for ( f l o a t j = 1 . 0 ; j <= f l o a t ( steps ) ; j += 1 .0 )
{

vec2 tc_sample = vec2 ( tc_depths + tc_s tep_s ize ∗ j ) ;
vec3 ec_hor izon = vec3 ( ec_step_size ∗ j , ec_depth (

tc_sample ) − ec_pos i t ion_depth ) ;
f l o a t ec_hor izon_length_squared = dot ( ec_horizon ,

ec_hor izon ) ;

f l o a t tan_sample = ec_hor izon . z / leng th ( ec_hor izon . xy ) ;

. . . / / Evaluate sample
}

where tan_sample is the tan function applied to the horizon an-
gle. Similar conventions apply to the other variables. Note how the
ray is actually marched in both texture and eye coordinates. The
latter is used to keep units consistent with the sample radius. The
evaluation of the sample works as explained in section 3.2.4

i f ( radius_squared >= ec_hor izon_length_squared && tan_sample
> tan_hor izon_angle )

{
f l o a t sin_sample = tan_ to_s in ( tan_sample ) ;
f l o a t weight = 1.0 − ec_hor izon_length_squared /

radius_squared ;

ambient_occlus ion . a += ( sin_sample − s in_hor izon_angle ) ∗
weight ;

tan_hor izon_angle = tan_sample ;
s in_hor izon_angle = sin_sample ;

}

Each sample contributes by remembering the previous hori-
zon_angle. Notice how the AO computation resembles that for-
mula found in Equation 3.4.

5.2.4 [Szirmay-Kalos et al. 2009]

The sampling itself is similar to that of [Mittring 2007a] with the
exception that each sample sz = pz as seen in Figure 3.6. The
new part is that the ratio visible to occluded line segment length
must be found. First by finding the depth difference between s and
p

f l o a t ec_sample_1_depth = ec_depth ( tc_sample_1 ) ;
f l o a t ec_sample_2_depth = ec_depth ( tc_sample_2 ) ;

f l o a t depth_d i f fe rence_1 = ec_pos i t ion_depth −
ec_sample_1_depth ;

f l o a t depth_d i f fe rence_2 = ec_pos i t ion_depth −
ec_sample_2_depth ;

where ec_depth is a function that returns depths in eye coordi-
nates; ec_position_depth is pd = depth(pxy). Note that sam-
pling is done in pairs symmetric around p. There height of the
sphere is found with trigonometry

f l o a t sphere_height ( i n vec2 pos i t i on , i n f l o a t rad ius )
{

return s q r t ( rad ius ∗ rad ius − dot ( pos i t i on , p o s i t i o n ) ) ;
}

Now the algorithm can proceed to find the ratio of occluded to
unoccluded line segment length

f l o a t volume_rat io_1 = ( samples_sphere_height −
depth_d i f fe rence_1 ) ∗ samples_sphere_depth_inverted ;

f l o a t volume_rat io_2 = ( samples_sphere_height −
depth_d i f fe rence_2 ) ∗ samples_sphere_depth_inverted ;

Note that the same sphere height is used for both samples. This is
possible because of the symmetry. This is the algorithm in its basic
form. However, we intend to provide the improved version that
solves depth discontinuity problems with paired sampling [Ownby
et al. 2010]. First we find which of the samples in the pair are valid
(if any). This is simply checking whether volume ratios are within
user-defined bounds (which depends on the scene)
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bool sample_1_val id = lower_bound <= volume_rat io_1 &&
upper_bound >= volume_rat io_1 ;

bool sample_2_val id = lower_bound <= volume_rat io_2 &&
upper_bound >= volume_rat io_2 ;

If sample s1 is invalid, a flat surface is assumed and the inverted
volume ratio of s2 is used instead. If both samples are invalid, we
are short of options. We have opted to assume 50 % occlusion in
this case as proposed by the authors of the method [Ownby et al.
2010].

/ / Should eva luate to a c o n d i t i o n a l assignment ( no branching )
i f ( sample_1_val id | | sample_2_val id )
{

/ / I f the sample i s v a l i d then use i t . I f not , then use
the other one i n the p a i r ( i n ve r t ed ) .

ambient_occlus ion . a += ( sample_1_val id ) ? volume_rat io_1
: 1.0 − volume_rat io_2 ;

ambient_occlus ion . a += ( sample_2_val id ) ? volume_rat io_2
: 1.0 − volume_rat io_1 ;

}
else
{

/ / Not 0.5 but 1.0 because both samples were i n v a l i d
ambient_occlus ion . a += 1 . 0 ;

}

5.2.5 [McGuire et al. 2011]

As discussed before, the Alchemy AO method is somewhat of a hy-
brid in its implementation. It uses the sample distribution of [Loos
and Sloan 2010] and then projects each sample onto the scene sur-
face as in [Bavoil et al. 2008a] (See Figure 3.8)

vec3 tc_sample ;
tc_sample . xy = tc_depths + sample_random_direct ion ∗

pro jec ted_rad ius ;
tc_sample . z = tc_depth ( tc_sample . xy ) ;

Samples are then backprojected from texture to world coordinates
for the actual evaluation.

vec3 ndc_sample = tc_sample ∗ 2.0 − 1 . 0 ;
vec4 temporary = inve rse_v iew_pro jec t i on_mat r i x ∗ vec4 (

ndc_sample , 1 .0 ) ;
vec3 wc_sample = temporary . xyz / temporary .w;

Now the AO contribution is evaluated according to Equation 3.10

vec3 v = wc_sample − wc_pos i t ion ;
ambient_occlus ion . a += max( 0 . 0 , dot ( v , wc_normal ) − bias ) / (

dot ( v , v ) + eps i l on ) ;

Most of the surrounding details have already been covered in one
form or another. One exception is the use of a distance-based sam-
ple count

i n t samples = max( i n t ( base_samples / (1 .0 + base_samples ∗
ndc_l inear_depth ) ) , min_samples ) ;

which can improve performance by sampling less at greater dis-
tances. However, this scheme conflicts with our later comparisons
and have been disabled.

5.2.6 [Mittring 2012]

Similar to [Bavoil et al. 2008a] in theory but the implementations
differ as we don’t need to ray-march (See Figure 4.3f). Also, we
use the sample pairs to conquer depth buffer discontinuities as pro-
posed in [Ownby et al. 2010]. For both samples, the angle is found
using vector mathematics

vec3 s = normal ize ( wc_sample − wc_pos i t ion ) ;
vec3 v = normal ize(−ver tex . wc_camera_ray_direct ion ) ;

f l o a t vn = dot ( v , wc_normal ) ;
f l o a t vs = dot ( v , s ) ;
f l o a t sn = dot ( s , wc_normal ) ;

/ / Cap to tangent plane
vec3 tangent = normal ize ( s − sn ∗ wc_normal ) ;
f l o a t cos_angle = (0 .0 <= sn ) ? vs : dot ( v , tangent ) ;

where s is the vector s− p; v is the view vector and wc_normal
is the normal. All variables are in world coordinates. In the end,
we have to find the angle directly with the acos function. How-
ever, this function is slow and we have opted to replace it with an
approximation

f l o a t acos_approximation ( f l o a t x )
{

return (−0.69813170079773212 ∗ x ∗ x −
0.87266462599716477) ∗ x + 1.5707963267948966;

}

This was suggested on the blog AltDevBlogADay2.

5.3 The Geometry-Aware Separable Blur

The separable blur is very straight-forward. It works as a normal
blur filter but with both depth and normal differences weighing
each sample’s contribution

r e s u l t = t e x t u r e ( source , t c ) ;
f l o a t weightSum = 1 . 0 ;

for ( i n t i = −1; i >= −samples_in_each_di rect ion ; −−i )
{

vec2 o f f s e t = vec2 ( f l o a t ( i ) , 0) . DIRECTION_SWIZZLE ∗
i nver ted_source_s ize ;

f l o a t normalWeight = pow( dot ( t e x t u r e ( wc_normals , t c +
o f f s e t ) . xyz , t e x t u r e ( wc_normals , t c ) . xyz ) ∗ 0.5 +
0.5 , normalPower ) ;

f l o a t pos i t ionWeigh t = 1.0 / pow(1 .0 + abs ( ec_depth ( t c ) −
ec_depth ( t c + o f f s e t ) ) , pos i t ionPower ) ;

f l o a t weight = normalWeight ∗ pos i t ionWeigh t ;

r e s u l t += t e x t u r e ( source , t c + o f f s e t ) ∗ weight ;
weightSum += weight ;

}

for ( i n t i = 1 ; i <= samples_in_each_di rect ion ; ++ i )
{

. . . / / Symmetr ica l ly
}

r e s u l t /= weightSum ;

where the constants normal_power and depth_power controls
the weighing. They are scene dependent, and we have found that
10.0 and 0.5 works well for the sponza, respectively. Recall, that a
separable blur filter first blurs in the horizontal and subsequently in
the vertical direction. The DIRECTION_SWIZZLE is there
because the shader source code is almost identical for both direc-
tions. It is toggled when compiling to for each pass as follows

# i f def ined HORIZONTAL
# def ine DIRECTION_SWIZZLE xy

# e l i f def ined VERTICAL
# def ine DIRECTION_SWIZZLE yx

#else

2http://www.altdevblogaday.com/2012/10/12/
angle-based-ssao/
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" Def ine HORIZONTAL or VERTICAL before compi l ing t h i s
shader ! " ;

#endif
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6 Results and Findings

In this chapter we will present our the results of our comparisons
and reflect at the findings.

6.1 Performance Configuration

We evaluate performance characteristics for two different views.
The first view goes deep into the scene while the second is a close-
up of a stone wall relief. The results are in Tables 2 and 3, re-
spectively. We encourage readers of the PDF document to zoom in
and view the images in detail. The output images are those ren-
dered by the method with the settings of the parameter and value
columns. The reference images are those ray-traced in Mental-
Ray. The raw images are also by the method but without the blur
pass and without the AO′ post-processing function (as discussed
in section 4.1.12). We aim to match the look of the reference by
tweaking blur and AO′ parameters. The raw images are provided
to explain the workings of each method in further detail.

We have already outlined how we went about configuring the
methods in the design section.

6.1.1 Precision

Let us first start by nothing that the performance timings are with
a precision of ±1 ms because of technical details that are hard to
work out. We ran the application several times and found that the
results varied (with ±1 ms) between runs even though the settings
were the same. We attribute this difference to technical details
that are beyond our control. Nevertheless, we are still within a
reasonable range of precision to make qualified statements.

6.1.2 Deep View Findings

Raw Results First and foremost, it is important to note how es-
sential it is to tweak the raw AO computations to match the ref-
erence. All methods had to be adjusted even though some came
naturally closer than others. This is not a surprising fact as SSAO
methods are approximate in general. Some authors actually value
the artistic control of functions such as AO′ along with method
specific parameters [McGuire et al. 2011]. Nevertheless, it is inter-
esting to see which methods came naturally closest. The category
of horizon-based methods seem to produce a lighter raw result.
This under-occlusion might be attributed to the fact that they as-
sume the horizon is completely clear. That is, they work under
the continuous hight-field assumption which we have seen doesn’t
hold up every in Figure 4.1. The two sphere-sampling methods
produce raw images that look very dark. However, as previously
mentioned this is because half of the samples are known to be oc-
cluded. The effect is removed by setting a = 0.5. It is interesting
to note how the concave geometry lights up in [Mittring 2007a] but
not in [Loos and Sloan 2010]. This is because the latter method
has been complemented with paired sampling—the lower bound
removes the highlights as well.

Tweaked Output Halos are prominently present with [Mittring
2007a] as it does not deal with depth buffer discontinuity at all.
The rest of the methods do so and resultingly, they have no ha-
los. [Mittring 2007a] produces a result in general is akin to AO.
However, it is more grainy because of the noise and blur and it
seems somewhat overoccluded. However, that is most likely due
to the halos. The [Filion and McNaughton 2008] method shares the
grainy and blurred feel but solves the halo problem by introducing
a falloff function.

The horizon-based methods fare fairly after they have been darked
by a high c parameter. That is, their underoccluded raw images

can be easily tweaked to give pleasing results. This fact may be
attributed to the fact that they are based on a model for AO that is
very close to the original definition. In fact, the only mathematical
difference is due the continous hightfield assumption. Interestingly
enough, [Bavoil et al. 2008a] is also the method that best captures
the definitions between the leaves in the flower pots.

Alchemy AO also stands out as a good SSAO candidate. However,
it does suffer from underocclusion in general too. We ponder that
the problem may reside with the fact that the sampling scheme is
designed to find occluders only. If many samples fail in regions the
result is an undersampled AO approximation which in turn leads
to too few occluders being found. The result is an underoccluded
image. Again, the missing shadows from the topstory curtains are
a good example of this.

Volumetric AO seems to suffer from the reverse problem: It is gen-
erally overoccluded. This may be attributed to the paired sampling
scheme intended to fix undersampling. This scheme works under
the assumption that surfaces are flat in general. When the assump-
tion fails, the output will use erroneous sample values. Another
reason may be due to the sampling approach. The method uses
samples distributed in a disk projected into the scene and then
assumes a sphere can be constructed around it. However, a disk
projects to an ellipsis and not another disk. As an ellipsis can’t
be the base of a sphere, the method is biased. Despite of all this,
Volumetric AO produces visually pleasing results.

The Numbers Maybe not surprisingly, the two oldest methods
(the point sampling methods) are among the slowest while they si-
multenously produces the most grainy and blurred results. Some
improvement can be seen when the hemisphere is used [Filion and
McNaughton 2008]: Only 15 samples are needed as opposed to
24 for the full sphere. This is however not affected in the AO
performance (3.75 ms vs 3.5) but that may be due to extra com-
putations required to transform each sample from world to screen
space. Also, please recall that the precision of the timings is ±1
ms.

Unfortunately, the otherwise good-looking horizon-based ap-
proaches perform just as badly. However, note that there is a large
difference in the number of samples needed between [Bavoil et al.
2008a] (8 × 6 samples) and [Mittring 2012] (6 samples). That
holds even though the latter has somewhat appearance. This may
not be surprising since it is 4 years older.

Standing out as the clear performance winners are Alchemy AO
(2.75 ms) and Volumetric AO (1.85 ms). Simultaneously, these
among the methods that require the smallest blur kernels. Volumet-
ric AO beats Alchemy AO in terms of total performance because it
requires only a single-pixel wide blur.

6.1.3 Close View

The same general observations as noted above also hold in the
close-up of the lion-head. Alchemy AO and Volumetric AO are
still the performance kings. In general, performance stays the
same as in the deep view. In terms of quality however, things have
changed for some methods.

The overocclusion noted previously with Volumetric AO has be-
come much more visible in the details around the lion head. Even
to an extent were they are visually unpleasing. One could argue
that a single-pixel wide blur is not enough for this method if the
viewer is also supposed to view objects close up. Another reason
for this overocclusion is the underlying assumption of Volumetric
AO: A ray traced in any direction from the center of the sample
sphere only hits a single surface. With small ridges and reliefed
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detail seen in close-up like here, this assumption fails within the
radius of the sample sphere.

The horizon-based methods still somewhat maintains the quality
level. That being said, [Bavoil et al. 2008a] seem to highlight the
underlying polygon surfaces. However, if we take a look at the ray-
traced reference, this is actually the expected result. The [Mittring
2012] doesn’t exhibit this property. Subjectively speaking, how-
ever, the result looks better without the polygon definition. [Mit-
tring 2012] also has problems with strange halo-like artifacts. It
seems like the flat surface assumption doens’t hold up well for the
round lion head.

Again, Alchemy AO looks great. Though this time around the
resemblence with the ray-traced reference is not near the same.
The symptomps are reversed of before and there is overocclusion
were there shouldn’t be. We suspect this may be the result of the
specially-chosen ρ function. ρ in alchemy represents an inverse
power function whereas the ray-traced reference uses linear attenu-
ation. Consequently, the results will differ and especially for close
distances as found in this setting.

6.2 Quality Configuration

We will now look into how each method fares when the aim is to
produce highest quality results. See Table 4 for the results. We
only use a single view here, as we have already discussed the im-
plications of close-ups in the previous section. It should be noted
that no post-process blur is used. The AO models stand on their
own.

It is immediately noticable that something is wrong with [Bavoil
et al. 2008a]. A gradient seems to have crept up along the floor and
walls which shouldn’t be there. We have not been able to identify
the issue at hand but it must be within our implementation is no
gradients have been reported in the literature. It should be noted
that for the same amount of samples and a larger sample radius, the
problem completely dissapears. It may be that we have run into an
unfortunate combination of parameters. Anyhow, at 64 ms this is
not really a candidate for the superior model!

Anyhow, the other methods perform remarkably well. One artifact
common to all the methods in this configuration is overocclusion
(see the shadow between the curtain and the wall). We attribute
this to the factors already listed for overocclusion in the sections
above. Alchemy AO is the only method which exhibits the least
amount of overocclusion. This is not surprising as we found it
to be underoccluding before. We theorize that the extra amount
of samples diminishes the effect of undersampling due to rejected
samples. Consequently, more occluders are found and the result is
darker.

Most notable overall is the performance characteristics. Volumet-
ric AO stands out by only using 6 ms in its best configuration.
Alchemy AO (12 ms) and and the [Mittring 2012] horizon-method
(16) ms are also good performers. It can be directly related to the
fact the all 3 methods require the least extra samples over the per-
formance configuration counterparts. [Mittring 2007a] performs
the worst and uses an astonishing 200 samples. By sampling there
hemisphere instead, [Filion and McNaughton 2008] accomplishes
similar results with only 80 samples.

6.3 Scalability

Last comes the issue of scalability. That is, how the methods reacts
to increasing the sample radius. To test this, we have used the
performace configuration as that is the one likely to be used in a
production setting. We double the sample radius to 20.0 world
coordinate units. The results are in Table 5.

Performance-wise, all the methods take a slight hit but nothing ma-
jor. Certainly out of the ±1 ms precision range. We theorize that
the computational overhead of space transformations and the like
simply outweighs the effect of increasing the sample radius.

Quality, however, is the more concerning factor. In general, all the
methods suffer a bit by deviating more from the reference image.
With that being said, Alchemy AO stands out as being closest to
the reference.

6.4 The Superior Method

We only went wthing the bounds of the 2 ms industry average ren-
der budget for one method: Alchemy AO. Following the discus-
sion above, there is no doubt that this method is superior in terms
of both performance and quality. We attribute the quality to the
strong mathematical foundation that it builds upon which never de-
viates from the original definition of AO (Equation 2.5). It never
makes any further assumptions that may break when it is applica-
ble. The only real concern is the underocclusion which occurs as
an effect of under-sampling. As an added benefit, it also scales
superiorly compared to the competition. The horizon-based meth-
ods have a similarly sound mathematical foundation that doesn’t
deviate from the orignal AO definition. However, they suffer in
terms of performance—they strategy simply doesn’t compete with
Alchemy AO. The early point sampling methods are completely
out of the line in terms of both performance and scalability. They
were interesting to include in the comparison to how much the field
of SSAO really has improved over time. Volumetric AO takes the
second-place. It has problems with over-occlusion but strong per-
formance characteristics.
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Parameter Value Output Reference Raw

Method [Mittring 2007a]
Sampling Radius 10.0
Samples 24
AO′ Parameters a = 0.57, b = 1.0, c = 5.0
Blur size 3
Performance 7.5 ms (AO 3.5, Blur 4)

Method [Filion and McNaughton
2008]

Sampling Radius 10.0
Samples 15
AO′ Parameters a = 0.0, b = 1.12, c = 2.5
Blur size 2
Performance 6.5 ms (AO 3.75, Blur

2.75)

Method [Bavoil et al. 2008a]
Sampling Radius 10.0
Samples 8 (6 ray-march steps)
AO′ Parameters a = 0.0, b = 1.03, c = 4.0
Blur size 1
Performance 8.5 ms (AO 6.75, Blur

1.75)

Method [Loos and Sloan 2010]
Sampling Radius 10.0
Samples 24
AO′ Parameters a = 0.5, b = 1.01, c = 8.0
Blur size 1
Performance 4.1 ms (AO 2.75, Blur

1.35)

Method [McGuire et al. 2011]
Sampling Radius 10.0
Samples 6
AO′ Parameters a = 0.0, b = 1.005,

c = 5.0
Blur size 2
Performance 4.75 ms (AO 1.85, Blur

2.9)

Method [Mittring 2012]
Sampling Radius 10.0
Samples 6
AO′ Parameters a = 0.0, b = 1.0, c = 3.0
Blur size 2
Performance 6.1 ms (AO 3.1, Blur 3.0)

Table 2: Performance configurations, deep view.
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Parameter Value Output Reference Raw

Method [Mittring 2007a]
Sampling Radius 10.0
Samples 24
AO′ Parameters a = 0.57, b = 1.0, c = 5.0
Blur size 3
Performance 7.5 ms (AO 3.5, Blur 4)

Method [Filion and McNaughton
2008]

Sampling Radius 10.0
Samples 15
AO′ Parameters a = 0.0, b = 1.12, c = 2.5
Blur size 2
Performance 7.0 ms (AO 4.0, Blur 3.0)

Method [Bavoil et al. 2008a]
Sampling Radius 10.0
Samples 8 (6 ray-march steps)
AO′ Parameters a = 0.0, b = 1.03, c = 4.0
Blur size 1
Performance 8.2 ms (AO 6.6, Blur 1.6)

Method [Loos and Sloan 2010]
Sampling Radius 10.0
Samples 24
AO′ Parameters a = 0.5, b = 1.01, c = 8.0
Blur size 1
Performance 4.4 ms (AO 2.9, Blur 1.5)

Method [McGuire et al. 2011]
Sampling Radius 10.0
Samples 6
AO′ Parameters a = 0.0, b = 1.005,

c = 5.0
Blur size 2
Performance 4.65 ms (AO 1.75, Blur

2.9)

Method [Mittring 2012]
Sampling Radius 10.0
Samples 6
AO′ Parameters a = 0.0, b = 1.0, c = 3.0
Blur size 2
Performance 6.0 ms (AO 3.0, Blur 3.0)

Table 3: Performance configurations, close view.
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Parameter Value Output Reference Raw

Method [Mittring 2007a]
Sampling Radius 10.0
Samples 200
AO′ Parameters a = 0.55, b = 1.0, c = 4.0
Blur size N/A
Performance 25 ms

Method [Filion and McNaughton
2008]

Sampling Radius 10.0
Samples 80
AO′ Parameters a = 0.0, b = 1.1, c = 2
Blur size N/A
Performance 19 ms

Method [Bavoil et al. 2008a]
Sampling Radius 10.0
Samples 80 (6 ray-march steps)
AO′ Parameters a = 0.0, b = 1.0, c = 3.0
Blur size N/A
Performance 64 ms

Method [Loos and Sloan 2010]
Sampling Radius 10.0
Samples 40
AO′ Parameters a = 0.5, b = 1.0, c = 3.0
Blur size N/A
Performance 6 ms

Method [McGuire et al. 2011]
Sampling Radius 10.0
Samples 64
AO′ Parameters a = 0.0, b = 1.0, c = 5.0
Blur size N/A
Performance 12 ms

Method [Mittring 2012]
Sampling Radius 10.0
Samples 32
AO′ Parameters a = 0.0, b = 1.0, c = 3.0
Blur size N/A
Performance 16 ms

Table 4: Quality configurations, deep view.
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Parameter Value Output Reference Raw

Method [Mittring 2007a]
Sampling Radius 20.0
Samples 24
AO′ Parameters a = 0.57, b = 1.0, c = 5.0
Blur size 3
Performance 7.5 ms (AO 3.5, Blur 4)

Method [Filion and McNaughton
2008]

Sampling Radius 20.0
Samples 15
AO′ Parameters a = 0.0, b = 1.12, c = 2.5
Blur size 2
Performance 6.7 ms (AO 4.0, Blur 2.7)

Method [Bavoil et al. 2008a]
Sampling Radius 20.0
Samples 8 (6 ray-march steps)
AO′ Parameters a = 0.0, b = 1.03, c = 4.0
Blur size 1
Performance 8.4 ms (AO 6.8, Blur 1.6)

Method [Loos and Sloan 2010]
Sampling Radius 20.0
Samples 24
AO′ Parameters a = 0.5, b = 1.01, c = 8.0
Blur size 1
Performance 4.65 ms (AO 3.1, Blur

1.55)

Method [McGuire et al. 2011]
Sampling Radius 20.0
Samples 6
AO′ Parameters a = 0.0, b = 1.005,

c = 5.0
Blur size 2
Performance 4.85 ms (AO 1.95, Blur

2.9)

Method [Mittring 2012]
Sampling Radius 20.0
Samples 6
AO′ Parameters a = 0.0, b = 1.0, c = 3.0
Blur size 2
Performance 6.5 ms (AO 3.5, Blur 3.0)

Table 5: Scalability using the performance configuration, deep view.38
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Figure 7.1: Animated spheres used to test for temporal coherence.
This topic was left out of the report.

7 Discussion

7.1 Extensions to SSAO

In the discussion we outlined som extensions applicable to many
SSAO methods. One was the use of directional occlusion (SSDO),
another was the use of bent normals, and a third was to go multi-
resolution. Some methods integrate better bent normals, SSDO,
and multi-resolution. than others. We have not touched upon how
such extensions integrate with the presented SSAO methods. This
could be an interesting topic for a follow-up report.

Temporal coherence is also an extension that has gotten a lot of
academic interest and production use. In this report, we have fo-
cussed on static scenes (though you may occassionally have no-
ticed an animated sphere in the screenshots, see Figure 7.1). How-
ever, real virtual worlds are dynamic and the SSAO methods must
also work in these environments.
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8 Conclusion

We have presented a large array of SSAO methods and imple-
mented six of them for comparison. Along the way we have un-
covered many vastly different approaches to AO and analyzed the
strenghts and weaknesses of each. Based on a thorough compari-
son, we found that Alchemy AO was the superior method overall.
However, as the field of SSAO has only existed for 6 years, many
methods remain to be discovered. As such, there should hope-
fully be work for another comparison in the future. As of now, we
will recommend the use of Alchemy AO untill a superior method
surfaces. We mentioned in the discussion that competing global
illumination methods are on the rise. It would be an equally inter-
esting topic for a future study to see how these methods approach
AO. We can only hope of the day that we won’t need the trickery
that is SSAO and instead use real-time ray-tracing to visualize our
virtual worlds.
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9 Appendix

9.1 Shaders

We have listed the full fragment shader implementations below. The accompanying vertex shaders are simple and have been omitted here.
Please clone the git repository at https://github.com/frederikaalund/sfj for further reference.

Listing 1: CryEngine2 SSAO

1 uni form sampler2D depths ;
2 uni form sampler2D random_texture ;
3
4 uni form vec3 wc_camera_eye_posit ion ;
5 uni form f l o a t z_ fa r ;
6
7 uni form vec2 tc_window ;
8
9 uni form mat4 p r o j e c t i o n _ m a t r i x ;

10
11
12
13
14 struct ver tex_data
15 {
16 vec3 wc_camera_ray_direct ion ;
17 } ;
18 noperspect ive i n ver tex_data ver tex ;
19
20 out vec4 ambient_occlus ion ;
21
22
23
24 f l o a t ec_depth ( i n vec2 t c )
25 {
26 f l o a t bu f fe r_z = t e x t u r e ( depths , t c ) . x ;
27 return p r o j e c t i o n _ m a t r i x [ 3 ] [ 2 ] / (−2.0 ∗ bu f fe r_z + 1.0 − p r o j e c t i o n _ m a t r i x [ 2 ] [ 2 ] ) ;
28 }
29
30
31
32 void main ( )
33 {
34 vec2 tc_depths = gl_FragCoord . xy / tc_window ;
35 f l o a t ec_depth_negated = −ec_depth ( tc_depths ) ;
36 vec3 wc_pos i t ion = wc_camera_eye_posit ion + ver tex . wc_camera_ray_direct ion ∗

ec_depth_negated / z_ fa r ;
37
38 ambient_occlus ion . a = 0.0 f ;
39 const f l o a t rad ius = 10 .0 ;
40 const i n t samples = 200;
41
42 f l o a t pro jec t i on_sca le_xy = 1.0 / ec_depth_negated ;
43 f l o a t pro jec t i on_sca le_z = 100.0 / z_ fa r ∗ pro jec t i on_sca le_xy ;
44
45 f l o a t scene_depth = t e x t u r e ( depths , tc_depths ) . x ;
46
47 vec2 inver ted_random_texture_s ize = 1.0 / vec2 ( tex tu reS ize ( random_texture , 0) ) ;
48 vec2 tc_random_texture = gl_FragCoord . xy ∗ inver ted_random_texture_s ize ;
49
50 vec3 random_direct ion = t e x t u r e ( random_texture , tc_random_texture ) . xyz ;
51 random_di rect ion = normal ize ( random_direct ion ∗ 2.0 − 1 .0 ) ;
52
53 for ( i n t i = 0 ; i < samples ; ++ i )
54 {
55 vec3 sample_random_direct ion = t e x t u r e ( random_texture , vec2 ( f l o a t ( i ) ∗

inver ted_random_texture_s ize . x , f l o a t ( i / t ex tu reS ize ( random_texture , 0) . x ) ∗
inver ted_random_texture_s ize . y ) ) . xyz ;

56 sample_random_direct ion = sample_random_direct ion ∗ 2.0 − 1 . 0 ;
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57 sample_random_direct ion = r e f l e c t ( sample_random_direct ion , random_direct ion ) ;
58
59 vec3 tc_sample_pos = vec3 ( tc_depths . xy , scene_depth )
60 + vec3 ( sample_random_direct ion . xy ∗ pro jec t ion_sca le_xy ,

sample_random_direct ion . z ∗ scene_depth ∗ pro jec t i on_sca le_z ) ∗ rad ius ;
61
62 f l o a t sample_depth = t e x t u r e ( depths , tc_sample_pos . xy ) . x ;
63
64 ambient_occlus ion . a += f l o a t ( sample_depth > tc_sample_pos . z ) ;
65 }
66
67 ambient_occlus ion . a /= f l o a t ( samples ) ;
68 }

Listing 2: Starcraft II SSAO

1 uni form sampler2D depths ;
2 uni form sampler2D wc_normals ;
3 uni form sampler2D random_texture ;
4
5 uni form vec3 wc_camera_eye_posit ion ;
6 uni form f l o a t z_ fa r ;
7
8 uni form vec2 tc_window ;
9

10 uni form mat4 v iew_matr ix ;
11 uni form mat4 p r o j e c t i o n _ m a t r i x ;
12 uni form mat4 v iew_pro jec t i on_mat r i x ;
13
14
15
16 struct ver tex_data
17 {
18 vec3 wc_camera_ray_direct ion ;
19 } ;
20 noperspect ive i n ver tex_data ver tex ;
21
22 out vec4 ambient_occlus ion ;
23
24
25
26 f l o a t ec_depth ( i n vec2 t c )
27 {
28 f l o a t bu f fe r_z = t e x t u r e ( depths , t c ) . x ;
29 return p r o j e c t i o n _ m a t r i x [ 3 ] [ 2 ] / (−2.0 ∗ bu f fe r_z + 1.0 − p r o j e c t i o n _ m a t r i x [ 2 ] [ 2 ] ) ;
30 }
31
32
33
34 void main ( )
35 {
36 vec2 tc_depths = gl_FragCoord . xy / tc_window ;
37 vec3 wc_normal = t e x t u r e ( wc_normals , tc_depths ) . xyz ;
38 vec3 wc_pos i t ion = wc_camera_eye_posit ion + ver tex . wc_camera_ray_direct ion ∗ −ec_depth (

tc_depths ) / z_ fa r ;
39
40 ambient_occlus ion . a = 0 . 0 ;
41 / / vec3 bent_normal = vec3 ( 0 . 0 ) ;
42 const f l o a t rad ius = 10 .0 ;
43 const i n t samples = 80;
44
45 f l o a t scene_depth = t e x t u r e ( depths , tc_depths ) . x ;
46
47 vec2 inver ted_random_texture_s ize = 1.0 / vec2 ( tex tu reS ize ( random_texture , 0) ) ;
48 vec2 tc_random_texture = gl_FragCoord . xy ∗ inver ted_random_texture_s ize ;
49
50 vec3 random_direct ion = t e x t u r e ( random_texture , tc_random_texture ) . xyz ;
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51 random_di rect ion = normal ize ( random_direct ion ∗ 2.0 − 1 .0 ) ;
52
53 for ( i n t i = 0 ; i < samples ; ++ i )
54 {
55 vec3 sample_random_direct ion = t e x t u r e ( random_texture , vec2 ( f l o a t ( i ) ∗

inver ted_random_texture_s ize . x , f l o a t ( i / t ex tu reS ize ( random_texture , 0) . x ) ∗
inver ted_random_texture_s ize . y ) ) . xyz ;

56 sample_random_direct ion = sample_random_direct ion ∗ 2.0 − 1 . 0 ;
57 sample_random_direct ion = r e f l e c t ( sample_random_direct ion , random_direct ion ) ;
58 sample_random_direct ion = faceforward ( sample_random_direct ion ,

sample_random_direct ion , −wc_normal ) ;
59
60 vec3 wc_sample = wc_pos i t ion + sample_random_direct ion ∗ rad ius ;
61 vec3 ec_sample = ( v iew_matr ix ∗ vec4 ( wc_sample , 1 .0 ) ) . xyz ;
62 vec4 cc_sample = v iew_pro jec t i on_mat r i x ∗ vec4 ( wc_sample , 1 .0 ) ;
63 vec3 ndc_sample = cc_sample . xyz / cc_sample .w;
64 vec2 tc_sample = ( ndc_sample . xy + vec2 ( 1 . 0 ) ) ∗ 0 . 5 ;
65
66 f l o a t scene_depth = ec_depth ( tc_sample ) ;
67 f l o a t sample_depth = ec_sample . z ;
68
69 f l o a t dep th_d i f fe rence = scene_depth − sample_depth ;
70
71 / / CryEngine2 rho
72 / / f l o a t rho = ( dep th_d i f fe rence <= 0.0 | | dep th_d i f fe rence > rad ius ) ? 1.0 : 0 . 0 ;
73
74 f l o a t rho = clamp ( ( dep th_d i f fe rence − rad ius ) / depth_d i f fe rence , 0 .0 , 1 .0 ) ;
75 ambient_occlus ion . a += rho ;
76 / / bent_normal += normal ize ( sample_random_direct ion ) ∗ rho ;
77 }
78
79 / / bent_normal = normal ize ( bent_normal ) ∗ 0.5 + 0 . 5 ;
80 / / ambient_occlus ion . rgb = bent_normal ;
81 ambient_occlus ion . a /= f l o a t ( samples ) ;
82 }

Listing 3: HBAO

1 #define USE_RANDOM_DIRECTION 0
2
3 uni form sampler2D depths ;
4 uni form sampler2D wc_normals ;
5 uni form sampler2D random_texture ;
6
7 uni form vec3 wc_camera_eye_posit ion ;
8 uni form f l o a t z_ fa r ;
9

10 uni form vec2 tc_window ;
11
12 uni form mat4 v iew_matr ix ;
13 uni form mat4 p r o j e c t i o n _ m a t r i x ;
14 uni form mat4 v iew_pro jec t i on_mat r i x ;
15 uni form mat4 inve rse_v iew_pro jec t i on_mat r i x ;
16
17
18
19 struct ver tex_data
20 {
21 vec3 wc_camera_ray_direct ion ;
22 } ;
23 noperspect ive i n ver tex_data ver tex ;
24
25 out vec4 ambient_occlus ion ;
26
27
28
29 f l o a t tc_depth ( i n vec2 t c )
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30 {
31 return t e x t u r e ( depths , t c ) . x ;
32 }
33
34 f l o a t ec_depth ( i n vec2 t c )
35 {
36 f l o a t bu f fe r_z = t e x t u r e ( depths , t c ) . x ;
37 return p r o j e c t i o n _ m a t r i x [ 3 ] [ 2 ] / (−2.0 ∗ bu f fe r_z + 1.0 − p r o j e c t i o n _ m a t r i x [ 2 ] [ 2 ] ) ;
38 }
39
40 f l o a t t an_ to_s in ( i n f l o a t x )
41 {
42 return x ∗ pow( x ∗ x + 1.0 , −0.5) ;
43 }
44
45 vec3 tc_to_ec ( i n vec2 t c )
46 {
47 vec3 tc_sample ;
48 tc_sample . xy = t c ;
49 tc_sample . z = tc_depth ( tc_sample . xy ) ;
50 vec3 ndc_sample = tc_sample ∗ 2.0 − 1 . 0 ;
51 vec4 temporary = inve rse_v iew_pro jec t i on_mat r i x ∗ vec4 ( ndc_sample , 1 .0 ) ;
52 vec3 wc_sample = temporary . xyz / temporary .w;
53 vec3 ec_sample = ( v iew_matr ix ∗ vec4 ( wc_sample , 1 .0 ) ) . xyz ;
54 return ec_sample ;
55 }
56
57 vec3 minimum_dif ference ( i n vec3 p , i n vec3 p_r igh t , i n vec3 p _ l e f t )
58 {
59 vec3 v1 = p _ r i g h t − p ;
60 vec3 v2 = p − p _ l e f t ;
61 return ( dot ( v1 , v1 ) < dot ( v2 , v2 ) ) ? v1 : v2 ;
62 }
63
64 void main ( )
65 {
66 vec2 depths_size = tex tu reS ize ( depths , 0) ;
67 vec2 depths_s ize_inversed = vec2 ( 1 . 0 ) / depths_size ;
68 vec2 tc_depths = gl_FragCoord . xy / tc_window ;
69 vec3 wc_normal = t e x t u r e ( wc_normals , tc_depths ) . xyz ;
70 f l o a t ndc_l inear_depth = −ec_depth ( tc_depths ) / z_ fa r ;
71 vec3 wc_pos i t ion = wc_camera_eye_posit ion + ver tex . wc_camera_ray_direct ion ∗

ndc_l inear_depth ;
72
73 vec3 ec_pos i t i on = ( v iew_matr ix ∗ vec4 ( wc_posi t ion , 1 .0 ) ) . xyz ;
74 f l o a t ec_pos i t ion_depth = ec_pos i t i on . z ;
75
76 ambient_occlus ion . a = 0 . 0 ;
77
78 const i n t base_samples = 0;
79 const i n t min_samples = 8;
80 const f l o a t rad ius = 20 .0 ;
81 const f l o a t radius_squared = rad ius ∗ rad ius ;
82 const f l o a t bias = 0 . 3 ;
83
84 i n t samples = max( i n t ( base_samples / (1 .0 + base_samples ∗ ndc_l inear_depth ) ) , min_samples ) ;
85
86 f l o a t pro jec ted_rad ius = rad ius / −ec_depth ( tc_depths ) ;
87
88 vec2 inver ted_random_texture_s ize = 1.0 / vec2 ( tex tu reS ize ( random_texture , 0) ) ;
89 vec2 tc_random_texture = gl_FragCoord . xy ∗ inver ted_random_texture_s ize ;
90
91 vec3 random_direct ion = t e x t u r e ( random_texture , tc_random_texture ) . xyz ;
92 random_di rect ion = normal ize ( random_direct ion ∗ 2.0 − 1 .0 ) ;
93
94 f l o a t angle_step = 2.0 ∗ PI / f l o a t ( samples ) ;
95 for ( i n t i = 0 ; i < samples ; ++ i )
96 {
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97 # i f USE_RANDOM_DIRECTION
98 vec2 sample_random_direct ion = t e x t u r e ( random_texture , vec2 ( f l o a t ( i ) ∗

inver ted_random_texture_s ize . x , f l o a t ( i / t ex tu reS ize ( random_texture , 0) . x ) ∗
inver ted_random_texture_s ize . y ) ) . xy ;

99 sample_random_direct ion = sample_random_direct ion ∗ 2.0 − 1 . 0 ;
100 vec2 tc_sample_d i rec t ion = sample_random_direct ion ;
101 #else
102 vec2 tc_sample_d i rec t ion = vec2 ( cos ( f l o a t ( i ) ∗ angle_step ) , s in ( f l o a t ( i ) ∗

angle_step ) ) ;
103 #endif
104
105
106 / / Tangent vec to r
107 vec3 p_r igh t , p _ l e f t , p_top , p_bottom ;
108 p _ r i g h t = tc_to_ec ( tc_depths + vec2 ( depths_s ize_inversed . x , 0 .0 ) ) ;
109 p _ l e f t = tc_to_ec ( tc_depths + vec2(−depths_s ize_inversed . x , 0 .0 ) ) ;
110 p_top = tc_to_ec ( tc_depths + vec2 ( 0 . 0 , depths_s ize_inversed . y ) ) ;
111 p_bottom = tc_to_ec ( tc_depths + vec2 ( 0 . 0 , −depths_s ize_inversed . y ) ) ;
112 vec3 dp_du = minimum_dif ference ( ec_pos i t ion , p_ r igh t , p _ l e f t ) ;
113 vec3 dp_dv = minimum_dif ference ( ec_pos i t ion , p_top , p_bottom ) ∗ ( depths_size . y ∗

depths_s ize_inversed . x ) ;
114 vec3 ec_tangent = tc_sample_d i rec t ion . x ∗ dp_du + tc_sample_d i rec t ion . y ∗ dp_dv ;
115
116
117 const i n t steps = 6;
118 vec2 tc_s tep_s ize = tc_sample_d i rec t ion ∗ pro jec ted_rad ius / f l o a t ( steps ) ;
119 vec2 ec_step_size = tc_sample_d i rec t ion ∗ rad ius / f l o a t ( steps ) ;
120
121 f l o a t tan_tangent_angle = ec_tangent . z / leng th ( ec_tangent . xy ) + tan ( b ias ) ;
122 f l o a t tan_hor izon_angle = tan_tangent_angle ;
123 f l o a t s in_hor izon_angle = tan_ to_s in ( tan_hor izon_angle ) ;
124
125 for ( f l o a t j = 1 . 0 ; j <= f l o a t ( steps ) ; j += 1 .0 )
126 {
127 vec2 tc_sample = vec2 ( tc_depths + tc_s tep_s ize ∗ j ) ;
128 vec3 ec_hor izon = vec3 ( ec_step_size ∗ j , ec_depth ( tc_sample ) −

ec_pos i t ion_depth ) ;
129 f l o a t ec_hor izon_length_squared = dot ( ec_horizon , ec_hor izon ) ;
130 f l o a t tan_sample = ec_hor izon . z / leng th ( ec_hor izon . xy ) ;
131
132 i f ( radius_squared >= ec_hor izon_length_squared && tan_sample >

tan_hor izon_angle )
133 {
134 f l o a t sin_sample = tan_ to_s in ( tan_sample ) ;
135 f l o a t weight = 1.0 − ec_hor izon_length_squared / radius_squared ;
136 ambient_occlus ion . a += ( sin_sample − s in_hor izon_angle ) ∗ weight ;
137 tan_hor izon_angle = tan_sample ;
138 s in_hor izon_angle = sin_sample ;
139 }
140 }
141 }
142
143 ambient_occlus ion . a /= samples ;
144 ambient_occlus ion . a = 1.0 − ambient_occlus ion . a ;
145 }

Listing 4: Volumetric Obscurance

1 uni form sampler2D depths ;
2 uni form sampler2D wc_normals ;
3 uni form sampler2D random_texture ;
4
5 uni form vec3 wc_camera_eye_posit ion ;
6 uni form f l o a t z_ fa r ;
7
8 uni form vec2 tc_window ;
9
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10 uni form mat4 v iew_matr ix ;
11 uni form mat4 p r o j e c t i o n _ m a t r i x ;
12 uni form mat4 v iew_pro jec t i on_mat r i x ;
13 uni form mat4 inve rse_v iew_pro jec t i on_mat r i x ;
14
15
16 struct ver tex_data
17 {
18 vec3 wc_camera_ray_direct ion ;
19 } ;
20 noperspect ive i n ver tex_data ver tex ;
21
22 out vec4 ambient_occlus ion ;
23
24
25
26 f l o a t tc_depth ( i n vec2 t c )
27 {
28 return t e x t u r e ( depths , t c ) . x ;
29 }
30
31 f l o a t ec_depth ( i n vec2 t c )
32 {
33 f l o a t bu f fe r_z = t e x t u r e ( depths , t c ) . x ;
34 return p r o j e c t i o n _ m a t r i x [ 3 ] [ 2 ] / (−2.0 ∗ bu f fe r_z + 1.0 − p r o j e c t i o n _ m a t r i x [ 2 ] [ 2 ] ) ;
35 }
36
37 f l o a t sphere_height ( i n vec2 pos i t i on , i n f l o a t rad ius )
38 {
39 return s q r t ( rad ius ∗ rad ius − dot ( pos i t i on , p o s i t i o n ) ) ;
40 }
41
42 void main ( )
43 {
44 vec2 tc_depths = gl_FragCoord . xy / tc_window ;
45 vec3 wc_normal = t e x t u r e ( wc_normals , tc_depths ) . xyz ;
46 f l o a t ndc_l inear_depth = −ec_depth ( tc_depths ) / z_ fa r ;
47 vec3 wc_pos i t ion = wc_camera_eye_posit ion + ver tex . wc_camera_ray_direct ion ∗

ndc_l inear_depth ;
48
49 vec3 ec_pos i t i on = ( v iew_matr ix ∗ vec4 ( wc_posi t ion , 1 .0 ) ) . xyz ;
50 f l o a t ec_pos i t ion_depth = ec_pos i t i on . z ;
51
52 ambient_occlus ion . a = 0 . 5 ;
53
54 const i n t base_samples = 0;
55 const i n t min_samples = 32;
56 const f l o a t rad ius = 10 .0 ;
57 const f l o a t lower_bound = 0 .35 ;
58 const f l o a t upper_bound = 1 . 0 ;
59
60 i n t samples = max( i n t ( base_samples / (1 .0 + base_samples ∗ ndc_l inear_depth ) ) , min_samples ) ;
61
62 mat4 inve rse_v iew_pro jec t i on_mat r i x = inverse ( v iew_pro jec t i on_mat r i x ) ;
63 f l o a t pro jec ted_rad ius = rad ius / −ec_depth ( tc_depths ) ;
64
65 vec2 inver ted_random_texture_s ize = 1.0 / vec2 ( tex tu reS ize ( random_texture , 0) ) ;
66 vec2 tc_random_texture = gl_FragCoord . xy ∗ inver ted_random_texture_s ize ;
67
68 vec3 random_direct ion = t e x t u r e ( random_texture , tc_random_texture ) . xyz ;
69 random_di rect ion = normal ize ( random_direct ion ∗ 2.0 − 1 .0 ) ;
70
71 for ( i n t i = 0 ; i < samples ; ++ i )
72 {
73 vec2 sample_random_direct ion = t e x t u r e ( random_texture , vec2 ( f l o a t ( i ) ∗

inver ted_random_texture_s ize . x , f l o a t ( i / t ex tu reS ize ( random_texture , 0) . x ) ∗
inver ted_random_texture_s ize . y ) ) . xy ;

74 sample_random_direct ion = sample_random_direct ion ∗ 2.0 − 1 . 0 ;
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75 vec2 sample_random_direct ion_negated = −sample_random_direct ion ;
76
77 vec2 tc_sample_1 = tc_depths + sample_random_direct ion ∗ pro jec ted_rad ius ;
78 vec2 tc_sample_2 = tc_depths + sample_random_direct ion_negated ∗ pro jec ted_rad ius ;
79
80 f l o a t ec_sample_1_depth = ec_depth ( tc_sample_1 ) ;
81 f l o a t ec_sample_2_depth = ec_depth ( tc_sample_2 ) ;
82 f l o a t depth_d i f fe rence_1 = ec_pos i t ion_depth − ec_sample_1_depth ;
83 f l o a t depth_d i f fe rence_2 = ec_pos i t ion_depth − ec_sample_2_depth ;
84 f l o a t samples_sphere_height = sphere_height ( tc_sample_1 , rad ius ) ;
85 f l o a t samples_sphere_depth_inverted = 1.0 / (2 .0 ∗ samples_sphere_height ) ;
86
87 f l o a t volume_rat io_1 = ( samples_sphere_height − depth_d i f fe rence_1 ) ∗

samples_sphere_depth_inverted ;
88 f l o a t volume_rat io_2 = ( samples_sphere_height − depth_d i f fe rence_2 ) ∗

samples_sphere_depth_inverted ;
89
90 bool sample_1_val id = lower_bound <= volume_rat io_1 && upper_bound >= volume_rat io_1

;
91 bool sample_2_val id = lower_bound <= volume_rat io_2 && upper_bound >= volume_rat io_2

;
92
93 / / Should eva luate to a c o n d i t i o n a l assignment ( no branching )
94 i f ( sample_1_val id | | sample_2_val id )
95 {
96 / / I f the sample i s v a l i d then use i t . I f not , then use the other one i n

the p a i r ( i n ve r t ed ) .
97 ambient_occlus ion . a += ( sample_1_val id ) ? volume_rat io_1 : 1.0 −

volume_rat io_2 ;
98 ambient_occlus ion . a += ( sample_2_val id ) ? volume_rat io_2 : 1.0 −

volume_rat io_1 ;
99 }

100 else
101 {
102 / / Not 0.5 but 1.0 because both samples were i n v a l i d .
103 ambient_occlus ion . a += 1 . 0 ;
104 }
105 }
106
107 ambient_occlus ion . a /= f l o a t ( samples ∗ 2.0 + 1 .0 ) ;
108 ambient_occlus ion . a = 1.0 − ambient_occlus ion . a ;
109 }

Listing 5: Alchemy AO

1 uni form sampler2D depths ;
2 uni form sampler2D wc_normals ;
3 uni form sampler2D random_texture ;
4
5 uni form vec3 wc_camera_eye_posit ion ;
6 uni form f l o a t z_ fa r ;
7
8 uni form vec2 tc_window ;
9

10 uni form mat4 p r o j e c t i o n _ m a t r i x ;
11 uni form mat4 v iew_pro jec t i on_mat r i x ;
12 uni form mat4 inve rse_v iew_pro jec t i on_mat r i x ;
13
14
15 struct ver tex_data
16 {
17 vec3 wc_camera_ray_direct ion ;
18 } ;
19 noperspect ive i n ver tex_data ver tex ;
20
21 out vec4 ambient_occlus ion ;
22
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23
24
25 f l o a t tc_depth ( i n vec2 t c )
26 {
27 return t e x t u r e ( depths , t c ) . x ;
28 }
29
30 f l o a t ec_depth ( i n vec2 t c )
31 {
32 f l o a t bu f fe r_z = t e x t u r e ( depths , t c ) . x ;
33 return p r o j e c t i o n _ m a t r i x [ 3 ] [ 2 ] / (−2.0 ∗ bu f fe r_z + 1.0 − p r o j e c t i o n _ m a t r i x [ 2 ] [ 2 ] ) ;
34 }
35
36
37
38 void main ( )
39 {
40 vec2 tc_depths = gl_FragCoord . xy / tc_window ;
41 vec3 wc_normal = t e x t u r e ( wc_normals , tc_depths ) . xyz ;
42 f l o a t ndc_l inear_depth = −ec_depth ( tc_depths ) / z_ fa r ;
43 vec3 wc_pos i t ion = wc_camera_eye_posit ion + ver tex . wc_camera_ray_direct ion ∗

ndc_l inear_depth ;
44
45 ambient_occlus ion . a = 0 . 0 ;
46
47 const i n t base_samples = 0;
48 const i n t min_samples = 64;
49 const f l o a t rad ius = 10 .0 ;
50 const f l o a t p r o j e c t i o n _ f a c t o r = 0 .75 ;
51 const f l o a t bias = 1 . 0 ;
52 const f l o a t sigma = 2 . 0 ;
53 const f l o a t eps i l on = 0.00001;
54
55 i n t samples = max( i n t ( base_samples / (1 .0 + base_samples ∗ ndc_l inear_depth ) ) , min_samples ) ;
56
57 mat4 inve rse_v iew_pro jec t i on_mat r i x = inverse ( v iew_pro jec t i on_mat r i x ) ;
58 f l o a t pro jec ted_rad ius = rad ius ∗ p r o j e c t i o n _ f a c t o r / −ec_depth ( tc_depths ) ;
59
60 vec2 inver ted_random_texture_s ize = 1.0 / vec2 ( tex tu reS ize ( random_texture , 0) ) ;
61 vec2 tc_random_texture = gl_FragCoord . xy ∗ inver ted_random_texture_s ize ;
62
63 vec3 random_direct ion = t e x t u r e ( random_texture , tc_random_texture ) . xyz ;
64 random_di rect ion = normal ize ( random_direct ion ∗ 2.0 − 1 .0 ) ;
65
66 for ( i n t i = 0 ; i < samples ; ++ i )
67 {
68 vec2 sample_random_direct ion = t e x t u r e ( random_texture , vec2 ( f l o a t ( i ) ∗

inver ted_random_texture_s ize . x , f l o a t ( i / t ex tu reS ize ( random_texture , 0) . x ) ∗
inver ted_random_texture_s ize . y ) ) . xy ;

69 sample_random_direct ion = sample_random_direct ion ∗ 2.0 − 1 . 0 ;
70
71 vec3 tc_sample ;
72 tc_sample . xy = tc_depths + sample_random_direct ion ∗ pro jec ted_rad ius ;
73 tc_sample . z = tc_depth ( tc_sample . xy ) ;
74 vec3 ndc_sample = tc_sample ∗ 2.0 − 1 . 0 ;
75 vec4 temporary = inve rse_v iew_pro jec t i on_mat r i x ∗ vec4 ( ndc_sample , 1 .0 ) ;
76 vec3 wc_sample = temporary . xyz / temporary .w;
77
78 vec3 v = wc_sample − wc_pos i t ion ;
79
80 ambient_occlus ion . a += max( 0 . 0 , dot ( v , wc_normal ) − bias ) / ( dot ( v , v ) + eps i l on ) ;
81 }
82
83 ambient_occlus ion . a = max( 0 . 0 , 1.0 − 2.0 ∗ sigma / f l o a t ( samples ) ∗ ambient_occlus ion . a ) ;
84 }

Listing 6: UnrealEngine4 SSAO
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1 uni form sampler2D depths ;
2 uni form sampler2D wc_normals ;
3 uni form sampler2D random_texture ;
4
5 uni form vec3 wc_camera_eye_posit ion ;
6 uni form f l o a t z_ fa r ;
7
8 uni form vec2 tc_window ;
9

10 uni form mat4 v iew_matr ix ;
11 uni form mat4 p r o j e c t i o n _ m a t r i x ;
12 uni form mat4 v iew_pro jec t i on_mat r i x ;
13 uni form mat4 inve rse_v iew_pro jec t i on_mat r i x ;
14
15
16
17 struct ver tex_data
18 {
19 vec3 wc_camera_ray_direct ion ;
20 } ;
21 noperspect ive i n ver tex_data ver tex ;
22
23 out vec4 ambient_occlus ion ;
24
25
26
27 f l o a t tc_depth ( i n vec2 t c )
28 {
29 return t e x t u r e ( depths , t c ) . x ;
30 }
31
32 f l o a t ec_depth ( i n vec2 t c )
33 {
34 f l o a t bu f fe r_z = t e x t u r e ( depths , t c ) . x ;
35 return p r o j e c t i o n _ m a t r i x [ 3 ] [ 2 ] / (−2.0 ∗ bu f fe r_z + 1.0 − p r o j e c t i o n _ m a t r i x [ 2 ] [ 2 ] ) ;
36 }
37
38 / / Reference : h t t p : / / s tackover f low .com/ a/3380723/554283
39 f l o a t acos_approximation ( f l o a t x )
40 {
41 return (−0.69813170079773212 ∗ x ∗ x − 0.87266462599716477) ∗ x + 1.5707963267948966;
42 }
43
44 f l o a t ca lcu la te_ang le (
45 i n vec2 d i r e c t i o n ,
46 i n vec2 tc_depths ,
47 i n f l o a t pro jec ted_rad ius ,
48 i n vec3 wc_posi t ion ,
49 i n vec3 wc_normal ,
50 i n f l o a t bias ,
51 i nou t f l o a t pa i r_we igh t )
52 {
53 vec3 tc_sample ;
54 tc_sample . xy = tc_depths + d i r e c t i o n ∗ pro jec ted_rad ius ;
55 tc_sample . z = tc_depth ( tc_sample . xy ) ;
56 vec3 ndc_sample = tc_sample ∗ 2.0 − 1 . 0 ;
57 vec4 temporary = inve rse_v iew_pro jec t i on_mat r i x ∗ vec4 ( ndc_sample , 1 .0 ) ;
58 vec3 wc_sample = temporary . xyz / temporary .w;
59
60 vec3 s = normal ize ( wc_sample − wc_pos i t ion ) ;
61 vec3 v = normal ize(−ver tex . wc_camera_ray_direct ion ) ;
62
63 f l o a t vn = dot ( v , wc_normal ) ;
64 f l o a t vs = dot ( v , s ) ;
65 f l o a t sn = dot ( s , wc_normal ) ;
66
67 / / Cap to tangent plane
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68 vec3 tangent = normal ize ( s − sn ∗ wc_normal ) ;
69 f l o a t cos_angle = (0 .0 <= sn ) ? vs : dot ( v , tangent ) ;
70
71 / / I n v a l i d samples are approximated by look ing a t the par tne r i n the p a i r o f samples
72 vec3 ec_pos i t i on = ( v iew_matr ix ∗ vec4 ( wc_posi t ion , 1 .0 ) ) . xyz ;
73 f l o a t dep th_d i f fe rence = ec_depth ( tc_sample . xy ) − ec_pos i t i on . z ;
74 i f (20 .0 < dep th_d i f fe rence )
75 {
76 pa i r_we igh t −= 0 . 5 ;
77 cos_angle = max( dot ( v , −s ) , 0 .0 ) ;
78 }
79
80 return max( acos_approximat ion ( cos_angle − bias ) , 0 .0 ) ;
81 }
82
83
84
85 void main ( )
86 {
87 vec2 tc_depths = gl_FragCoord . xy / tc_window ;
88 vec3 wc_normal = t e x t u r e ( wc_normals , tc_depths ) . xyz ;
89 f l o a t ndc_l inear_depth = −ec_depth ( tc_depths ) / z_ fa r ;
90 vec3 wc_pos i t ion = wc_camera_eye_posit ion + ver tex . wc_camera_ray_direct ion ∗

ndc_l inear_depth ;
91
92 ambient_occlus ion . a = 0 . 0 ;
93
94 const i n t base_samples = 0;
95 const i n t min_samples = 32;
96 const f l o a t rad ius = 10 .0 ;
97 const f l o a t bias = 0 .08 ;
98 const f l o a t p r o j e c t i o n _ f a c t o r = 0 .75 ;
99

100 i n t samples = max( i n t ( base_samples / (1 .0 + base_samples ∗ ndc_l inear_depth ) ) , min_samples ) ;
101
102 f l o a t pro jec ted_rad ius = rad ius ∗ p r o j e c t i o n _ f a c t o r / −ec_depth ( tc_depths ) ;
103
104 vec2 inver ted_random_texture_s ize = 1.0 / vec2 ( tex tu reS ize ( random_texture , 0) ) ;
105 vec2 tc_random_texture = gl_FragCoord . xy ∗ inver ted_random_texture_s ize ;
106
107 vec3 random_direct ion = t e x t u r e ( random_texture , tc_random_texture ) . xyz ;
108 random_di rect ion = normal ize ( random_direct ion ∗ 2.0 − 1 .0 ) ;
109
110 f l o a t weight_sum = 0.0001;
111 for ( i n t i = 0 ; i < samples ; ++ i )
112 {
113 vec2 sample_random_direct ion = t e x t u r e ( random_texture , vec2 ( f l o a t ( i ) ∗

inver ted_random_texture_s ize . x , f l o a t ( i / t ex tu reS ize ( random_texture , 0) . x ) ∗
inver ted_random_texture_s ize . y ) ) . xy ;

114 sample_random_direct ion = sample_random_direct ion ∗ 2.0 − 1 . 0 ;
115 vec2 sample_random_direct ion_negated = −sample_random_direct ion ;
116
117 f l o a t pa i r_we igh t = 1 . 0 ;
118
119 f l o a t angle_sum =
120 ca lcu la te_ang le ( sample_random_direct ion , tc_depths , p ro jec ted_rad ius ,

wc_posi t ion , wc_normal , bias , pa i r_we igh t )
121 + ca lcu la te_ang le ( sample_random_direction_negated , tc_depths ,

p ro jec ted_rad ius , wc_posi t ion , wc_normal , bias , pa i r_we igh t ) ;
122
123 ambient_occlus ion . a += angle_sum ∗ pa i r_we igh t ;
124 weight_sum += pa i r_we igh t ;
125 }
126
127 ambient_occlus ion . a /= weight_sum ∗ PI ;
128 }
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Listing 7: Geometry-aware Blur

1 uni form sampler2D depths ;
2 uni form sampler2D wc_normals ;
3 uni form sampler2D source ;
4
5 uni form mat4 p r o j e c t i o n _ m a t r i x ;
6
7
8
9 out vec4 r e s u l t ;

10
11
12
13 f l o a t ec_depth ( i n vec2 t c )
14 {
15 f l o a t bu f fe r_z = t e x t u r e ( depths , t c ) . x ;
16 return p r o j e c t i o n _ m a t r i x [ 3 ] [ 2 ] / (−2.0 ∗ bu f fe r_z + 1.0 − p r o j e c t i o n _ m a t r i x [ 2 ] [ 2 ] ) ;
17 }
18
19
20
21 void main ( )
22 {
23 vec2 inver ted_source_s ize = 1.0 / vec2 ( tex tu reS ize ( source , 0) ) ;
24 vec2 t c = gl_FragCoord . xy ∗ i nver ted_source_s ize ;
25
26 # i f def ined HORIZONTAL
27 #define DIRECTION_SWIZZLE xy
28 # e l i f def ined VERTICAL
29 #define DIRECTION_SWIZZLE yx
30 #else
31 " Def ine HORIZONTAL or VERTICAL before compi l ing t h i s shader ! " ;
32 #endif
33
34
35
36 r e s u l t = t e x t u r e ( source , t c ) ;
37
38
39
40 const f l o a t normal_power = 10 .0 ;
41 const f l o a t depth_power = 0 . 5 ;
42 const i n t samples_in_each_di rect ion = 1;
43 f l o a t weightSum = 1 . 0 ;
44
45 for ( i n t i = −1; i >= −samples_in_each_di rect ion ; −− i )
46 {
47 vec2 o f f s e t = vec2 ( f l o a t ( i ) , 0) . DIRECTION_SWIZZLE ∗ i nver ted_source_s ize ;
48
49 f l o a t normalWeight = pow( dot ( t e x t u r e ( wc_normals , t c + o f f s e t ) . xyz , t e x t u r e (

wc_normals , t c ) . xyz ) ∗ 0.5 + 0.5 , normal_power ) ;
50 f l o a t pos i t ionWeigh t = 1.0 / pow(1 .0 + abs ( ec_depth ( t c ) − ec_depth ( t c + o f f s e t ) ) ,

depth_power ) ;
51 f l o a t weight = normalWeight ∗ pos i t ionWeigh t ;
52
53 r e s u l t += t e x t u r e ( source , t c + o f f s e t ) ∗ weight ;
54 weightSum += weight ;
55 }
56
57 for ( i n t i = 1 ; i <= samples_in_each_di rect ion ; ++ i )
58 {
59 vec2 o f f s e t = vec2 ( f l o a t ( i ) , 0) . DIRECTION_SWIZZLE ∗ i nver ted_source_s ize ;
60
61 f l o a t normalWeight = pow( dot ( t e x t u r e ( wc_normals , t c + o f f s e t ) . xyz , t e x t u r e (

wc_normals , t c ) . xyz ) ∗ 0.5 + 0.5 , normal_power ) ;
62 f l o a t pos i t ionWeigh t = 1.0 / pow(1 .0 + abs ( ec_depth ( t c ) − ec_depth ( t c + o f f s e t ) ) ,

depth_power ) ;
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63 f l o a t weight = normalWeight ∗ pos i t ionWeigh t ;
64
65 r e s u l t += t e x t u r e ( source , t c + o f f s e t ) ∗ weight ;
66 weightSum += weight ;
67 }
68
69 r e s u l t /= weightSum ;
70 }

Listing 8: Lighting and Shading

1 uni form sampler2D depths ;
2 uni form sampler2D wc_normals ;
3 uni form sampler2D albedos ;
4 uni form sampler2D random_texture ;
5 uni form sampler2D ambient_occ lus ion_tex ture ;
6 uni form sampler2DShadow shadow_map ;
7
8 uni form samplerBuf fer l i g h t s ;
9 # i f d e f USE_TILED_SHADING

10 uni form isamp le rBu f fe r l i g h t _ g r i d ;
11 uni form isamp le rBu f fe r l i g h t _ i n d e x _ l i s t ;
12 uni form i n t t i l e _ s i z e ;
13 #else
14 uni form i n t l i g h t s _ s i z e ;
15 #endif
16
17 uni form ivec2 window_dimensions ;
18 uni form ivec2 gr id_dimensions ;
19
20 uni form vec3 wc_camera_eye_posit ion ;
21 uni form f l o a t z_ fa r ;
22
23 uni form mat4 v iew_matr ix ;
24 uni form mat4 p r o j e c t i o n _ m a t r i x ;
25 uni form mat4 v iew_pro jec t i on_mat r i x ;
26 uni form mat4 l i g h t _ m a t r i x ;
27
28
29
30 struct ver tex_data
31 {
32 vec3 wc_camera_ray_direct ion ;
33 } ;
34 noperspect ive i n ver tex_data ver tex ;
35
36 out vec4 co lo r ;
37 out vec4 o v e r b r i g h t ;
38
39
40
41 f l o a t eye_z ( i n vec2 t c )
42 {
43 f l o a t bu f fe r_z = t e x t u r e ( depths , t c ) . x ;
44 return p r o j e c t i o n _ m a t r i x [ 3 ] [ 2 ] / (−2.0 ∗ bu f fe r_z + 1.0 − p r o j e c t i o n _ m a t r i x [ 2 ] [ 2 ] ) ;
45 }
46
47
48
49 vec4 c a l c u l a t e _ d i r e c t _ l i g h t (
50 i n vec3 wc_posi t ion ,
51 i n vec3 wc_normal ,
52 i n vec3 albedo ,
53 i n f l o a t specular_exponent )
54 {
55 vec4 r e s u l t = vec4 ( 0 . 0 , 0 .0 , 0 .0 , 1 .0 ) ;
56

54



9.1 Shaders 9 APPENDIX

57 # i f d e f USE_TILED_SHADING
58 i vec2 gr id_ index = ivec2 ( gl_FragCoord . xy ) / t i l e _ s i z e ;
59 i vec2 gr id_da ta = ivec2 ( texe lFe tch ( l i g h t _ g r i d , gr id_dimensions . x ∗ gr id_ index . y + gr id_ index

. x ) . xy ) ;
60
61 i n t o f f s e t = gr id_da ta . x ;
62 i n t count = gr id_da ta . y ;
63 #else
64 i n t count = l i g h t s _ s i z e ;
65 #endif
66
67 for ( i n t l = 0 ; l < count ; ++ l )
68 {
69 # i f d e f USE_TILED_SHADING
70 i n t l i g h t _ i d = i n t ( texe lFe tch ( l i g h t _ i n d e x _ l i s t , o f f s e t + l ) . x ) ;
71 #else
72 i n t l i g h t _ i d = l ;
73 #endif
74 #define LIGHT_STRUCT_SIZE 9
75
76 vec3 p o s i t i o n = vec3 ( texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE) . x , texe lFe tch (

l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 1) . x , texe lFe tch ( l i g h t s , l i g h t _ i d ∗
LIGHT_STRUCT_SIZE + 2) . x ) ;

77 vec3 l i g h t _ c o l o r = vec3 ( texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 3) . x ,
texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 4) . x , texe lFe tch ( l i g h t s ,
l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 5) . x ) ;

78 f l o a t cons tan t_a t tenua t ion = texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 6) . x ;
79 f l o a t l i n e a r _ a t t e n u a t i o n = texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 7) . x ;
80 f l o a t cub ic_a t tenua t i on = texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 8) . x ;
81
82 vec3 l i g h t _ d i r e c t i o n = p o s i t i o n − wc_pos i t ion ;
83 f l o a t l i g h t _ d i s t a n c e = leng th ( l i g h t _ d i r e c t i o n ) ;
84 l i g h t _ d i r e c t i o n /= l i g h t _ d i s t a n c e ;
85
86 f l o a t f a l l o f f = 1.0 / ( cons tan t_a t tenua t ion + l i g h t _ d i s t a n c e ∗ ( l i n e a r _ a t t e n u a t i o n +

cub ic_a t tenua t i on ∗ l i g h t _ d i s t a n c e ) ) ;
87
88 / / D i f f use
89 vec3 l i g h t _ c o n t r i b u t i o n = albedo ∗ l i g h t _ c o l o r ∗ max( dot ( wc_normal , l i g h t _ d i r e c t i o n )

, 0 .0 ) ;
90 / / Specular
91 l i g h t _ c o n t r i b u t i o n += specular_exponent ∗ max(pow( dot ( wc_normal , −normal ize ( ver tex .

wc_camera_ray_direct ion ) ) , 2 .0 ) , 0 .0 ) ;
92
93 / / TODO: Remove the f o l l o w i n g l i n e . I ’m j u s t t e s t i n g HDR!
94 l i g h t _ c o n t r i b u t i o n ∗= 4 . 0 ;
95
96 / / F a l l o f f
97 r e s u l t . rgb += l i g h t _ c o n t r i b u t i o n ∗ f a l l o f f ;
98 }
99

100 return r e s u l t ;
101 }
102
103
104
105 f l o a t shadow_map_lookup_with_offset ( i n sampler2DShadow shadow_map , i n vec2 inverted_shadow_map_size

, i n vec4 v , i n vec2 o f f s e t )
106 {
107 return t e x t u r e P r o j ( shadow_map , vec4 ( v . s t + o f f s e t ∗ inverted_shadow_map_size ∗ v .w, v . zw) ) ;
108 }
109
110 f l o a t ca lcu la te_shadow_coe f f i c i en t ( i n vec3 wc_pos i t ion )
111 {
112 const f l o a t bias = 1 . 0 ;
113 vec4 cc_pos i t i on_ f rom_ l i gh ts_v iew = l i g h t _ m a t r i x ∗ vec4 ( wc_posi t ion , 1 .0 ) ;
114 cc_pos i t i on_ f rom_ l i gh ts_v iew . z −= bias ;
115 /∗
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116 f l o a t shadow_coef f i c ien t = t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2
(−2, 2) ) ;

117 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (−1,
2) ) ;

118 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (0 ,
2) ) ;

119 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (1 ,
2) ) ;

120 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (2 ,
2) ) ;

121 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (−2,
1) ) ;

122 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (−1,
1) ) ;

123 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (0 ,
1) ) ;

124 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (1 ,
1) ) ;

125 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (2 ,
1) ) ;

126 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (−2,
0) ) ;

127 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (−1,
0) ) ;

128 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (0 ,
0) ) ;

129 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (1 ,
0) ) ;

130 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (2 ,
0) ) ;

131 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (−2,
−1) ) ;

132 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (−1,
−1) ) ;

133 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (0 ,
−1) ) ;

134 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (1 ,
−1) ) ;

135 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (2 ,
−1) ) ;

136 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (−2,
−2) ) ;

137 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (−1,
−2) ) ;

138 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (0 ,
−2) ) ;

139 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (1 ,
−2) ) ;

140 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map , cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 (2 ,
−2) ) ;

141 ∗ /
142
143 / / The f o l l o w i n g works j u s t as we l l on NVidia hardware .
144 / / Note t h a t the pragma works g l o b a l l y ! I . e . , a l l loops w i l l be un ro l l ed .
145 f l o a t shadow_coef f i c ien t = 0 . 0 ;
146 #pragma optionNV ( u n r o l l a l l )
147 for ( i n t t = 5 ; t >= −5; −−t )
148 for ( i n t s = −5; s <= 5; ++s )
149 shadow_coef f i c ien t += t e x t u r e P r o j O f f s e t ( shadow_map ,

cc_pos i t i on_ f rom_ l igh ts_v iew , ivec2 ( s , t ) ) ;
150
151 return shadow_coef f i c ien t / (11 .0 ∗ 11.0) ;
152 /∗
153 vec2 inverted_shadow_map_size = 1.0 / vec2 ( tex tu reS ize ( shadow_map , 0) ) ;
154 vec2 inver ted_random_texture_s ize = 1.0 / vec2 ( tex tu reS ize ( random_texture , 0) ) ;
155 vec2 tc_random_texture = gl_FragCoord . xy ∗ inver ted_random_texture_s ize ;
156 f l o a t shadow_coef f i c ien t = 0 . 0 ;
157
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158
159
160 vec2 random_direct ion = t e x t u r e ( random_texture , tc_random_texture ) . xy ;
161
162 mat2 o r i e n t = mat2 ( random_direct ion , vec2(− random_di rect ion . y , random_direct ion . x ) ) ;
163
164 f o r ( f l o a t t = 3 . 5 ; t >= −3.5; t −= 1 .0 )
165 {
166 f o r ( f l o a t s = −3.5; s <= 3 . 5 ; s += 1 .0 )
167 {
168
169 shadow_coef f i c ien t += shadow_map_lookup_with_offset ( shadow_map ,

inverted_shadow_map_size , cc_pos i t i on_ f rom_ l igh ts_v iew , vec2 ( s , t ) ) +
o r i e n t [ 0 ] [ 0 ] ∗ 1.0e−32;

170
171 / / tc_random_texture . x += s ∗ inver ted_random_texture_s ize . x ;
172 }
173 / / tc_random_texture . x += t ∗ inver ted_random_texture_s ize . y ;
174 }
175
176 shadow_coef f i c ien t ∗= 1.0 / ( 6 4 . 0 ) ;
177 r e t u r n shadow_coef f i c ien t ;
178 ∗ /
179 }
180
181
182
183
184 vec4 c a l c u l a t e _ d i r e c t _ l i g h t 2 (
185 i n vec3 wc_posi t ion ,
186 i n vec3 wc_normal ,
187 i n vec3 albedo ,
188 i n vec3 bent_normal ,
189 i n f l o a t specular_exponent )
190 {
191 vec4 r e s u l t = vec4 ( 0 . 0 , 0 .0 , 0 .0 , 1 .0 ) ;
192
193 # i f d e f USE_TILED_SHADING
194 i vec2 gr id_ index = ivec2 ( gl_FragCoord . xy ) / t i l e _ s i z e ;
195 i vec2 gr id_da ta = ivec2 ( texe lFe tch ( l i g h t _ g r i d , gr id_dimensions . x ∗ gr id_ index . y + gr id_ index

. x ) . xy ) ;
196
197 i n t o f f s e t = gr id_da ta . x ;
198 i n t count = gr id_da ta . y ;
199 #else
200 i n t count = l i g h t s _ s i z e ;
201 #endif
202
203 for ( i n t l = 0 ; l < count ; ++ l )
204 {
205 # i f d e f USE_TILED_SHADING
206 i n t l i g h t _ i d = i n t ( texe lFe tch ( l i g h t _ i n d e x _ l i s t , o f f s e t + l ) . x ) ;
207 #else
208 i n t l i g h t _ i d = l ;
209 #endif
210 #define LIGHT_STRUCT_SIZE 9
211
212 vec3 p o s i t i o n = vec3 ( texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE) . x , texe lFe tch (

l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 1) . x , texe lFe tch ( l i g h t s , l i g h t _ i d ∗
LIGHT_STRUCT_SIZE + 2) . x ) ;

213 vec3 l i g h t _ c o l o r = vec3 ( texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 3) . x ,
texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 4) . x , texe lFe tch ( l i g h t s ,
l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 5) . x ) ;

214 f l o a t cons tan t_a t tenua t ion = texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 6) . x ;
215 f l o a t l i n e a r _ a t t e n u a t i o n = texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 7) . x ;
216 f l o a t cub ic_a t tenua t i on = texe lFe tch ( l i g h t s , l i g h t _ i d ∗ LIGHT_STRUCT_SIZE + 8) . x ;
217
218 vec3 l i g h t _ d i r e c t i o n = p o s i t i o n − wc_pos i t ion ;
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219 f l o a t l i g h t _ d i s t a n c e = leng th ( l i g h t _ d i r e c t i o n ) ;
220 l i g h t _ d i r e c t i o n /= l i g h t _ d i s t a n c e ;
221
222 f l o a t f a l l o f f = 1.0 / ( cons tan t_a t tenua t ion + l i g h t _ d i s t a n c e ∗ ( l i n e a r _ a t t e n u a t i o n +

cub ic_a t tenua t i on ∗ l i g h t _ d i s t a n c e ) ) ;
223
224 / / D i f f use
225 vec3 l i g h t _ c o n t r i b u t i o n = albedo ∗ l i g h t _ c o l o r ∗ max( dot ( bent_normal ,

l i g h t _ d i r e c t i o n ) , 0 .0 ) ;
226
227 / / Specular
228 l i g h t _ c o n t r i b u t i o n += specular_exponent ∗ max(pow( dot ( wc_normal , −normal ize ( ver tex .

wc_camera_ray_direct ion ) ) , 2 .0 ) , 0 .0 ) ;
229
230 / / F a l l o f f
231 r e s u l t . rgb += l i g h t _ c o n t r i b u t i o n ∗ f a l l o f f ;
232 }
233
234 return r e s u l t ;
235 }
236
237
238
239
240 f l o a t ec_depth ( i n vec2 t c )
241 {
242 f l o a t bu f fe r_z = t e x t u r e ( depths , t c ) . x ;
243 return p r o j e c t i o n _ m a t r i x [ 3 ] [ 2 ] / (−2.0 ∗ bu f fe r_z + 1.0 − p r o j e c t i o n _ m a t r i x [ 2 ] [ 2 ] ) ;
244 }
245
246
247
248
249
250
251 void main ( )
252 {
253 vec2 tc_window = gl_FragCoord . xy / window_dimensions ;
254 vec3 wc_pos i t ion = wc_camera_eye_posit ion + ver tex . wc_camera_ray_direct ion ∗ −eye_z (

tc_window ) / z_ fa r ;
255 vec3 wc_normal = t e x t u r e ( wc_normals , tc_window ) . xyz ;
256 vec3 albedo = t e x t u r e ( albedos , tc_window ) . xyz ;
257 f l o a t specular_exponent = t e x t u r e ( albedos , tc_window ) .w;
258 vec3 bent_normal = normal ize ( t e x t u r e ( ambient_occ lus ion_texture , tc_window ) . rgb ∗ 2.0 − 1 .0 ) ;
259 f l o a t ambient_occlus ion = t e x t u r e ( ambient_occ lus ion_texture , tc_window ) . a ;
260 const f l o a t a = 0 . 5 ;
261 const f l o a t b = 1 . 0 ;
262 const f l o a t c = 1 . 0 ;
263 ambient_occlus ion = pow( b ∗ ( ambient_occlus ion + a ) , c ) ;
264
265 / / D i r e c t l i g h t
266 co lo r = 0.5880 ∗ c a l c u l a t e _ d i r e c t _ l i g h t 2 ( wc_posi t ion , wc_normal , albedo , bent_normal ,

specular_exponent ) ;
267
268 / / Shadow Mapping
269 co lo r . rgb ∗= ca lcu la te_shadow_coe f f i c i en t ( wc_pos i t ion ) ;
270
271 / / I n d i r e c t l i g h t
272 co lo r . rgb += 0.15880 ∗ albedo ∗ ambient_occlus ion ;
273
274 / / Overr ides
275 / / co l o r . rgb ∗= 1.0e−32;
276 / / co l o r . rgb += vec3(−eye_z ( tc_window ) / z_ fa r ) ;
277 / / co l o r . rgb += vec3 ( ambient_occlus ion ) ;
278 / / co l o r . g += t e x t u r e ( ambient_occ lus ion_texture , tc_window ) . x ;
279 / / co l o r . rgb += t e x t u r e ( random_texture , tc_window ) . rgb ;
280 / / co l o r . rgb += bent_normal ;
281 / / co l o r . rgb += wc_normal ;
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282 / / co l o r . rgb += albedo ;
283 / / co l o r . rgb += 0.5880 ∗ c a l c u l a t e _ d i r e c t _ l i g h t 2 ( wc_posi t ion , wc_normal , albedo , bent_normal ,

specular_exponent ) . rgb ;
284
285 / / Overbr igh t
286 const f l o a t b loom_ l im i t = 1 . 0 ;
287 vec3 b r i g h t _ c o l o r = max( co l o r . rgb − vec3 ( b loom_ l im i t ) , vec3 ( 0 . 0 ) ) ;
288 f l o a t br igh tness = dot ( b r i g h t _ c o l o r , vec3 ( 1 . 0 ) ) ;
289 br igh tness = smoothstep ( 0 . 0 , 0 .5 , b r igh tness ) ;
290 o v e r b r i g h t . rgb = mix ( vec3 ( 0 . 0 ) , co l o r . rgb , b r igh tness ) ;
291 }
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