
Real-time Rendering Using Layered Depth Maps
Frederik Peter Aalund*

DTU
Student (s093279)

Jeppe Revall Frisvad†
DTU

Supervisor

Jakob Andreas Bærentzen‡
DTU

Supervisor

Figure 1: All images are generated using rasterization and layered depth maps. From left to right: Ambient obscurance, ambient occlusion,
single-bounce indirect lighting, and environment lighting combined with indirect lighting.

Abstract

A layered depth map is an extension to the well-known depth map
used in rasterization. Multiple layered depth maps can be used as
a coarse scene representation. We develop two global illumination
methods which use said scene representation. The first is a real-
time ambient occlusion method. The second is an interactive single-
bounce indirect lighting method based on photon differentials. All
of this is implemented in a rasterization-based pipeline.

Keywords: real-time rendering, layered depth maps, order-
independent transparency, global illumination, ambient occlusion,
indirect lighting, photon differentials

Links: Wൾൻ Cඈൽൾ

Acknowledgements

I want to thank my supervisors, Jeppe Revall Frisvad and Jakob
Andreas Bærentzen, for their guidance and support throughout this
project. Moreover, for their prompt and detailed replies to my e-
mails and for giving me access to the neccessary hardware. I would
also like to thank Christian Viggo Larsen and Alessandro Dal Corso
for helping me with shader debugging. Lastly, I want to thank
Alessandro Dal Corso for letting me use his computer to collect re-
sults.

*e-mail: frederikaalund+ldm2015@gmail.com
†e-mail: jerf@dtu.dk
‡e-mail: janba@dtu.dk

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 The Project . 2
1.3 Prerequisites . 3
1.4 Overview . 3

2 Overview of Scene Representations 3

3 Layered Depth Maps 4
3.1 Background . 4
3.2 Previous Work . 6
3.3 Design . 15
3.4 Implementation . 19

4 Ambient Occlusion 27
4.1 Background . 27
4.2 Previous Work . 29
4.3 Design . 32
4.4 Implementation . 34

5 Indirect Lighting 37
5.1 Background . 37
5.2 Previous Work . 42
5.3 Design . 45
5.4 Implementation . 47

6 Results and Findings 52
6.1 Ambient Occlusion 52
6.2 Indirect Lighting . 56
6.3 Impact of Workarounds 63
6.4 Combination . 63

7 Discussion 66
7.1 Indirect Lighting Comparison 66
7.2 Method Improvements 67
7.3 Implementation Improvements 68
7.4 Auxiliary Uses . 68

8 Conclusion 69

Glossary 70

References 72

Appendix 76

http://frederikaalund.com/real-time-rendering-with-layered-depth-maps/
https://github.com/frederikaalund/sfj

1 Introduction

In this section, we will first provide motivation for our research
topic. First, we give a full description of the project on which this
report is based. Second, we outline the prerequisites for reading
this document. Third, we provide an overview of the remaining
sections.

1.1 Motivation

Rasterization is a popular real-time rendering technique based on
primitive traversal of the scene geometry [Akenine-Möller et al.
2008]. That is, each primitive is rasterized into pixels individually
and the sum of all primitive contributions constitutes the rendered
image (Figure 2a). Contrast this technique to ray-tracing which is
based on pixel traversal [Whitted 1980]. That is, each pixel’s color
is computed by ray-tracing from the pixel’s position on the image
plane through the primitives that constitute the scene geometry (Fig-
ure 2b).

Despite the many similarities between rasterization and ray-tracing,
the traversal order is a distinctive difference. Rasterization only re-
quires local scene information (a single primitive) each step. Ray-
tracing, however, requires global scene information (all primitives)
each step. Consequently, rasterization has a smaller memory foot-
print for complex scenes. This is a key advantage of rasterization
and it has lead to dedicated acceleration through GPUs [Akenine-
Möller et al. 2008]. Simultaneously, this is a significant limitation
of rasterization since only local information can be used in shading.

Overcoming the local limitation of rasterization in real-time render-
ing has been the focus of recent research (see Section 2). Common
for all methods is the use of an auxiliary data structure which con-
tains a coarse representation of the scene geometry. Programmable
GPU features such as fragment shaders are adapted to construct said
data structures in real-time.

During rasterization, a shader can then query the auxiliary data
structure for global scene information. The latter can be used to
implement global illumination and thus overcome the local limi-
tation of rasterization. This is an ideal combination of the perfor-
mance characteristics of rasterization with the physical correctness
of global illumination (Figure 2c).

1.2 The Project

We use an auxiliary data structure based on layered depth maps that
can be used to query global scene information during rasterization as
done in [Krüger et al. 2006; Bürger et al. 2007; Zhang et al. 2008;
Niessner et al. 2010; Hu et al. 2014]. Layered, in the sense that
all depth values (not just a single one) are stored in the map. The
novelty in our approach is that each layered depth map is pre-sorted
which in turn allows for a fast tracing algorithm.

We also present two global illumination methods which use raster-
ization in combination with our auxiliary data structure: ambient
occlusion (AO) and single-bounce indirect lighting. These meth-
ods are meant to demonstrate the applicability of our auxiliary data
structure. We use a path traced reference to evaluate the image qual-
ity of our results. Furthermore, we compare the AO implementation
with a screen-space approach.

The auxiliary data structure and the accompanying global illumi-
nation techniques will be implemented in a C++14/1z application
using OpenGL 4.x for hardware acceleration. The target platforms
will be desktops or laptops with a recent GPU running Windows,
OS X, or a Unix-like operating system. Note that the presented

(a) Rasterization. Each cell in the grid represents a pixel on the image plane
(4 × 4 in this case). The triangle from the blue cube is projected into the
image plane (primitive→ pixels). This happens in isolation of the rest of the
scene. Consequently, only local illumination can be used in shading. On the
other hand, the memory requirements are low since only a single primitive is
rendered at a time.

(b) Ray-tracing. Tracing starts from the image plane and can reflect between
multiple surfaces before ending at a light source (pixel→ primitives). Hence a
ray-tracer can implement global illumination. On the other hand, the memory
requirements are high since all primitives must be kept in memory.

(c) Rasterization with an auxiliary data structure. Global scene information
can now be queried (dashed arrows) from an approximate scene representa-
tion (pixelated objects).

Figure 2: Comparison of rendering strategies.

2

techniques are not limited to said platforms; we are merely targeting
them in order to demonstrate our results.

1.3 Prerequisites

We assume that the reader is familiar with the basic concepts and
methods of real-time rendering and physically-based rendering. We
will, however, provide explanations of advanced topics as they be-
come relevant. Likewise, we will provide details about the under-
lying hardware when the hardware either constrains or guides our
approach. This includes elaborations on performance characteris-
tics that are tied to our choice of GPU.

Specifically, we will not explain the purpose of a fragment shader or
the derivation of the rendering equation. Please refer to [Akenine-
Möller et al. 2008] and [Pharr and Humphreys 2004] for the basics
of real-time rendering and physically-based rendering, respectively.

1.4 Overview

This remainder of this report is divided into four parts: A cursory
part followed by three in-depth main parts. First, we give a brief
overview of scene representations used in real-time rendering. Sec-
ond, we go into details with layered depth maps. Third, we intro-
duce a real-time AO technique to demonstrate the use of our auxil-
iary data structure. Fourth, we introduce an indirect lighting tech-
nique based on photon differentials which also uses our auxiliary
data structure.

The threemain parts will present background theory, previouswork,
method design, and implementation details. As mentioned in Sec-
tion 1.3, most basic concepts are assumed known. Consequently,
the given background theory is merely intended to establish notation
and provide general historical context. The latter is done through an
analysis of previous work. We generally present the previous work
chronologically but reserve the right to deviate from the timeline
when appropriate for interjections. Then, we use the result of the
analysis to design a method suitable for our use case. Lastly, we
go into the implementation details that make our design usable in
practice.

The three main parts are followed by our results and findings. We
will provide a qualitative comparison of image quality (correctness)
as well as a quantitative comparison of performance. Then we dis-
cuss our results and suggest improvements to our approach and de-
sign. Lastly, we conclude the project and propose topics for future
study.

2 Overview of Scene Representations

This section will give a brief overview of various auxiliary scene
representations used to provide global information during rasteriza-
tion. The discussion is limited to representations that have been
used in real-time rendering. The purpose is to put our chosen
method, layered depth maps, in a larger context. As such, we will
not go into detail with any of the alternatives but merely mention
them. This section can be skipped if you are already familiar with
the topic.

Depth Map One of the earlier approaches is to use the depth
map from the rasterization pipeline as a coarse scene representa-
tion. This can be used to approximate AO [Mittring 2007; Shan-
mugam and Arikan 2007], reflections (so-called image-space re-
flections) [Kasyan et al. 2011], and even single-bounce indirect
lighting [Ritschel et al. 2009]. The depth map is often used together

with a normal map, diffuse reflectance map, and other maps com-
mon in a deferred rendering pipeline.

Multi-view All deferred maps are screen-space limited (no scene
information outside the field of view). One remedy is to simply ren-
der the scene from multiple views in order to get more geometric
information [Ritschel et al. 2009]. However, multi-view rendering
adds additional overhead to the rendering pipeline. If only depth
values are needed, then the lights’ shadow maps can be reused as a
view source [Vardis et al. 2013]. This mitigates some of the over-
head.

Multi-resolution Performance can be further improved by using
a multi-resolution map [Nichols and Wyman 2009]. That is, a map
which embeds coarser versions of itself. This approach is similar
to mipmapping but uses a conservative min-max reduction scheme
instead of linear interpolation.

Shadow Map The shadow map alone can be augmented with
additional scene information (positions, normals, radiant flux) to
produce a reflective shadow map. The latter is used to approxi-
mate single-bounce indirect lighting [Dachsbacher and Stamminger
2005]. The indirect diffuse light is often low-frequency which
enables the use of low-resolution and approximate shadow maps
(known as imperfect shadow maps) [Ritschel et al. 2008].

Layered Depth Map The limitations of the depth map led to the
use of a layered depth map [Ritschel et al. 2009]. As with depth
maps, multi-view solutions are often used [Ritschel et al. 2009;
Niessner et al. 2010; Tokuyoshi and Ogaki 2012b]. Through time,
applications have varied from simple reflections [Zhang et al. 2008]
to bidirectional path tracing via rasterization [Tokuyoshi and Ogaki
2012b]. Layered depth maps are explored further in Section 3.

Voxel Grid Another approach is to compute a dynamic sparse
voxel octree during primitive traversal. The octree serves as a coarse
scene representation and can be queried efficiently with voxel cone
tracing to approximate ambient occlusion and glossy reflections
[Crassin et al. 2011]. Similarly, a voxel structure can be used to
store potential ray hits in a ray grid. The ray grid is then used to
combine rasterization and ray-tracing in a hybrid technique [Zirr
et al. 2014].

Surfel Cloud Each primitive is tessellated into surface elements
(surfels) and shading effects are applied via splatting [Nalbach et al.
2014]. A surfel is really an oriented disk which augments the
properties of its parent primitive. Contrast this to the traditional
pipeline where primitives are rasterized directly and shading effects
are applied via gathering. E.g., as done in screen-space ambient
occlusion (SSAO) [Mittring 2007; Shanmugam and Arikan 2007].
With surfels, all geometric information sent through the rasteriza-
tion pipeline is retained. I.e., no information is lost due to occlusion.

Hybrids A coarse voxel grid can be combined with the preci-
sion of layered depth maps in a hybrid technique [Hu et al. 2014].
The voxel grid is first queried to find a conservative depth inter-
val. The latter is then refined by a range-limited lookup into a lay-
ered depth map. Another approach is to combine reflective shadow
maps with layered depth maps [Tokuyoshi and Ogaki 2012b]. Yet
another method uses the coarse voxel grid for visibility queries and
determines the indirect light using reflective shadow maps [Sugi-
hara et al. 2014].

3

z1z0 z2 z3 z4 z5

L(1,0)
2

L(1,1)
4

L(1,2)
6

over

Figure 3: Lk
p for the three pixels of Figure 4b. I.e., for p = (1, 0),

p = (1, 1), and p = (1, 2). Note that k may very between pixels.
The largest k denotes the number of layers (six in this case). A
sequence, Lk

p , does not necessarily contain a value for each layer.
E.g., L2

(0,1) which only has two entries. Also shown is over applied
to each fragment color in sequence.

3 Layered Depth Maps

Layered depth maps were invented to solve the issue of rendering
transparent objects with a rasterization pipeline [Maule et al. 2011].
However, our motivation to study layered depth maps is not related
to transparency. We use layered depth maps as a coarse scene repre-
sentation in order to provide global information during rasterization.
Nevertheless, previous work on layered depth maps in the context
of transparency can be readily applied to our use case. Therefore,
we devote the next couple of sections to study the traditional use of
layered depth maps.

First, the background sectionwill explain the original motivation for
layered depth maps. Next, previous work is explored. The design
section evaluates the previous work and selects a suitable method.
Lastly, the implementation section describes how to implement a
layered depth map in practice.

3.1 Background

This section will explain the origin of depthmaps, the problems they
solve, and their limitations. Said limitations motivate layered depth
maps which are explained next.

3.1.1 Depth Map

A depth map stores a single depth value per pixel. The depth of a
pixel is the distance from the viewer to the first surface represented
by the pixel [Catmull 1974] (Figure 4a).

Most graphics hardware incorporate a depth map into its rasteriza-
tion pipeline [Akenine-Möller et al. 2008]. The depth map is also
referred to as the z-buffer or depth buffer in this context because the
z-coordinate in normalized device coordinates (NDC) denotes the
distance into the screen1. The z-buffer is used to resolve fragment
visibility so that the closest fragments (lowest z-value) are drawn on
top. For this purpose, it’s only interesting to store the closest depth

1The original term z-buffer was coined by its inventor [Catmull 1974].
Some authors capitalize the term to Z-buffer [Akenine-Möller et al. 2008].
We prefer the term depth map as it’s consistent with the term layered depth
map.

(lowest z-value) in the depth map. Therefore, only a single value
per pixel is needed.

A single depth value, however, is not enough to handle trans-
parency.

Transparency Color in real-time rendering is usually represented
by an RGBA tuple2, were A is the alpha value (or opacity) in the
range [0; 1]. Opacity is the complement of transparency. Translu-
cency being the general case, transparency is the special case of
non-scattering light passing through an object. It’s an oft-used sim-
plification in real-time rendering.

Typically, two colors are blended into a single by color as if one
color is in front of the other. This process is represented by the
Porter-Duff over operator [Porter and Duff 1984]

over : (RGBA,RGBA) → RGBA

which can be implemented as

f over b =

fAfR +

(
1− fA

)
bR

fAfG +
(
1− fA

)
bG

fAfB +
(
1− fA

)
bB

fA +
(
1− fA

)
bA

where f is the front color and b is the back color [Akenine-Möller
et al. 2008]. The subscripts denote the color components. In prac-
tice, a slightly different definition is used

f over b =

fR’ +

(
1− fA

)
bR

fG’ +
(
1− fA

)
bG

fB’ +
(
1− fA

)
bB

fA +
(
1− fA

)
bA

where f is stored using pre-multiplied alphas R’

G’
B’
A

 =

 A · R
A · G
A · B
A

Besides being more efficient (one less multiplication), colors with
pre-multiplied alphas can be linearly interpolated (as done during
texture filtering) which is why this approach is favored in practice
[McDonald 2013].

Note that over is non-commutative since

f over b ̸= b over f

for some f, b ∈ RGBA (except when f = b). This is is true whether
alphas have been pre-multiplied or not. In other words, over is
order-dependent. Consequently, all the fragments of a pixel must
be blended in depth-sorted order to correctly resolve transparency.
The depth map cannot be used for this purpose as it only stores a sin-
gle depth value (the closest). This limits the depth map to opaque
surfaces3.

2A diffuse/specular texture usually contains tuples of wavelength-
banded reflectivity coefficients. The color of a texture is really an inter-
pretation of said coefficients under ideal conditions.

3An incomplete solution is to depth-sort the primitives before rasteri-
zation [Govindaraju et al. 2004]. The problem is overlap cycles between
primitives. When an overlap cycle occurs, depth-sorting is not applicable
and the solution fails [Maule et al. 2011; Knowles et al. 2012].

4

(a) Depth map. Each pixel stores the distance from the viewer to the first
geometric intersection along the view ray of said pixel. Here, three view rays
are shown along with the depth value of the closest fragment. Orthographic
projection is used but the principle is the same for perspective projection.

(b) Layered depth map. Each pixel stores multiple depth values. Here, three
view rays are shown. The depth values are given in the colored squares
along each view ray. Both front and back faces are rasterized. Note that
multiple fragments may map to the same pixel.

Figure 4: Storage of depth values.

3.1.2 Layered Depth Map

A layered depth map stores multiple depth values per pixel. More
precisely, to each pixel, p, is associated a sorted sequence of depth
value, Lk

p = (z0, z1, . . . , zk), where z0 ≤ z1 ≤ · · · ≤ zk for
some k. A depth value, zl, is said to be in the lth layer (and the lth
layer is said to contain zl). This way, layers enforce relative depth
ordering between any two pixels. Within a pixel, each depth value
is uniquely identified by its layer. We may omit k and write Lp to
denote that the sequence is not of fixed length. See Figures 3 and
4b for reference.

Note that while all depth values are in a layer, a layer is not nec-
essarily associated with all pixels. That is, layers can vary in size
(the number of depth values in a given layer). This is the case in
Figure 3.

A layered depth map will usually hold some additional fragment
data besides the depth value. E.g., an RGBA tuple denoting the frag-
ment’s surface color. Therefore, we will sometimes refer to Lk

p as
a sequence of fragments. We have omitted the additional fragment
data from the formal description since the following discussion is
focused on depth values.

Note that a depth map is a special case of a layered depth map with
only a single layer that contains all depth values.

Transparency Layered depth maps succeed where depth maps
fail: They can handle transparent surfaces. over is simply ap-
plied sequentially to the depth-sorted elements of eachLp sequence.
Compare Figure 4a and Figure 4b to see the difference. As such, the
graphics pipeline may render primitives in any order and rely on the
data structure behind Lp to sort the fragments according to depth.
This is referred to as order-independent transparency (OIT). The
difficult part is to choose a suitable data structure for Lp that fits
into a rasterization-based pipeline. Even more so to choose one that

is efficient enough for real-time purposes. Section 3.2 will go into
detail on how this is achieved.

Terminology We distinguish between the notion of a layered
depth map and its implementation. The former is defined by Lk

p

and the latter is one of the various X-buffers which will be pre-
sented next. In previous work, notion and implementation have
sometimes been covered by the same term. Notably, the so-called
A-buffer which was both the first to introduce layered depth maps
and a corresponding implementation. Consequently, the A-buffer
has become synonymous for both.

To confuse matters more, the layered depth map notion also has
different names. E.g., the multi-layer z-buffer [Max et al. 1996],
layered depth images [Gortler et al. 1997], fragment lists [Szécsi
and Illés 2012], the layered fragment buffer [Knowles et al. 2012],
etc. We will use the term layered depth map for the rest of this
report.

5

L(1,0)
2

L(1,1)
4

L(1,2)
6

1.6 2.5 3.9 4.8

5.4 7.2

3.9 7.24.8 5.4

4.93.8

Figure 5: A-buffer. Each Lk
p sequence is stored in a singly linked

list. Note the extra spaced used for the next pointer (arrow). A head
pointer is used to mark the start of the list. A null pointer (grey dot)
marks the end of the list.

3.2 Previous Work

This section is a comparative study of various layered depth map
implementations. From this study we chose a candidate which we
will use for the remainder of the report.

3.2.1 A-buffer

Layered depth maps were introduced with the anti-aliased, area-
averaged, accumulation buffer (A-buffer) [Carpenter 1984] as a
depth map replacement that can handle transparency. This was be-
fore the emergence of GPUs and the given implementation is meant
for offline use in the REYES system. Despite the the differences
between the REYES system and say the OpenGL pipeline, the A-
buffer is still relevant today. The anti-aliased, area-averaged, ac-
cumulation buffer is named so because the original implementation
also handles anti-aliasing and weighs color by the sub-pixel surface
area.

The authors describe what is essentially a per-pixel singly linked list
of fragments sorted according to depth (Figure 5). Thus theA-buffer
is the first to introduce the notion of Lp and even suggests a data
structure for it. The sorting algorithm is left unspecified, however.
Likewise, there is no discussion on the memory bounds though the
authors do suggest a C struct layout for the nodes in the linked list.
See Figure 8 for a possible memory layout.

The authors also propose various transparency-specific optimiza-
tions. E.g., skipping fragments behind opaque surfaces. Our use
case is to preserve geometric information so in our case such opti-
mizations are irrelevant.

3.2.2 Z3

The Z3 data structure seeks to improve on the anti-aliasing of the
A-buffer by storing not only the depth value, z, but also the slopes
(derivatives) of the depth value, zx and zy , in the x- and y-direction,
respectively [Jouppi and Chang 1999]. Hence the name Z3 since
it stores three z-related values. Furthermore, the authors suggest
to store a constant k fragments per pixel. That is, to use an Lk

p

sequence (Figure 6a). If a pixel has more than k fragments, then two
existing fragments are merged to make room for the new fragment.

Unfortunately, a fixed k makes the Z3 approximate since it can
potentially discard geometric detail (through the merging of frag-
ments). As such, it is not useful for our purpose of creating a scene

representation. Still, Z3 is the first to suggest a memory-bound data
structure (since k is kept fixed). Specifically, it is suggested to use
contiguous storage (Figure 6b). This may lead to wasted space if
some layers are sparse. Furthermore, Z3 is proposed as a hardware
extension and it is unclear which rasterization system it is meant to
integrate with (if any).

3.2.3 Hardware Proposals

In the wake of Z3, the years 2000–2003 saw many proposals which
implement OIT with hardware extensions. The first GPUs of the
Nvidia GeForce and the ATI Radeon4 lines had just come out in
1999 and 2000, respectively [Mark and Proudfoot 2001]. GPU ar-
chitectures were still young. However, none of these proposals have
been exposed through either DirectX or OpenGL as part of commer-
cially available hardware. Still, we mention some of them here for
completeness.

R-buffer The recirculating fragment buffer (R-buffer) is a point-
erless derivative of the A-buffer that provides OIT for a fixed-
function pipeline (such as OpenGL 1.x) [Wittenbrink 2001]. The
R-buffer is essentially a first-in, first-out (FIFO) buffer of the in-
coming fragments. It’s pointerless, since a FIFO buffer can be im-
plemented with contiguous storage. The authors also provide a two-
pass algorithm meant to be implemented in hardware. In the first
pass over the scene geometry, all transparent fragments are added
to the R-buffer. In the second pass over the R-buffer, fragments are
either blended into the framebuffer or put back (recirculated) in the
R-buffer. Thus the second pass must be repeated until the R-buffer
is empty.

The actual logic of the second pass is complex and out of scope of
this report. The interesting part is that the fragments are stored in
the order they are fed into the pipeline and not with regard to their
x- and y-coordinates. In other words, the R-buffer provides unique
storage for all fragments.

F-buffer The fragment-stream buffer (F-buffer) is a new render
target (RT) that stores all incoming fragments in a FIFO buffer
[Mark and Proudfoot 2001]. As such, it is very similar to the R-
buffer. Special passes are used to empty the F-buffer and write di-
rectly to the framebuffer. The F-buffer is not onlymeant to solve the
problem of order-independent transparency. It is a general proposal
meant to be used with a programmable pipeline (such as OpenGL
2.x and above) in combination with any technique that requires a
FIFO buffer of fragments.

The ATI 9800 and X800 actually shipped with a hardware F-buffer
implementation [Houston et al. 2005]. However, it was never ex-
posed through a publicly available API. The F-buffer has since then
not been part of newer ATI/AMD GPUs’ feature list.

The R-buffer and the F-buffer are some of the first to propose that
unique storage should be provided for all fragments in the fixed-
function and programmable pipeline, respectively. As will soon be-
come apparent, this is a key concept that later methods reproduce
via advanced features (OpenGL 4.x).

Others The simply-named fragment buffer stores per pixel linked
lists (similar to the A-buffer) in special-purpose hardware [Lee and
Kim 2000]. The delay stream is a FIFO (similar to the R-buffer)
which stores deferred primitives while subsequent occlusion infor-
mation is gathered [Aila et al. 2003]. OIT is implemented by query-
ing the delay stream for primitive information.

4Now AMD Radeon.

6

L(1,0)
7

L(1,1)
7

L(1,2)
7

1.6 2.5 3.9 4.8 5.4 7.2

3.9 4.8 5.4 7.2

3.8 4.9

(a) Using the example seen in Figure 3. Shown here for k = 7. Each Lk
p

sequence is stored in a fixed-length contiguous array. Note that a lot of
space is wasted storing null values for pixels with few actual depth values.

1.6 2.5 3.94.8 5.4 7.2

3.9

7.2

4.8 5.44.93.8

21

Depth Values (real depth)
0 1 2 4 5 6 7 8 9

10 11

3

12 14 15 16 17 18 1913

(b) Memory layout. This figure uses the example seen in Figure 6a. Three
pixels are rendered so the storage requirements are k × pixels = 7× 3 =
21.

Figure 6: Z3.

There are also earlier OIT-related hardware proposals [Schilling and
StraBer 1993; Winner et al. 1997]. However, they are unlikely to
see a present-day implementation since the overall GPU hardware
architecture has changed dramatically in the past 18–22 years.

3.2.4 k-buffer

A layered depth map with a fixed number of layers, Lk
p =

(z1, z2, . . . , zk) for some constant k, is called a k-buffer [Callahan
et al. 2005]. Note thatZ3 already introduced this idea in [Jouppi and
Chang 1999] but did not coin the term k-buffer. As we mentioned
about Z3, a limited depth value sequence, Lk

p , is not particularly
useful to represent the scene geometry. Thus we will not go into
too much detail with k-buffer but only elaborate on the technical
innovations that accompanied them.

One k-buffer uses multiple render targets (MRT) to store the indi-
vidual fragments [Callahan et al. 2005]. In a single pass, the frag-
ments are written to the MRT, read back, sorted, and blended to-
gether. At the time, this allowed for k = 7 (6 from theMRT and one
for the incoming fragment) in a single pass. Note that read-modify-
write (RMW) from MRT in a single pass is undefined behaviour
in OpenGL. The authors also note this but found that it worked in
practice. Furthermore, they suggest to add memory objects with ar-
bitrary read/write and synchronization primitives as extensions to
OpenGL. Both features later became standard and are used by re-
cent methods (Section 3.2.5).

Further advances in the available number of RTs allows for k = 16
[Bavoil et al. 2007]. Though this is accompanied with a special
batching of primitives tomitigate the undefined behaviour of RMW.

Another implementation uses a multisample texture to store multi-
ple depth values per pixel (instead of anti-aliasing samples) [Myers
and Bavoil 2007]. This allows for k = 8 in a single pass. The im-
plementation is standard compliant since it uses the stencil buffer to
route depth value into the subpixels of the multisample texture.

Common for all approaches is that k is rather low. Still, it seems to
produce good results when used for transparency. Furthermore, k
can artificially be increased by using multiple passes. However this
requires object sorting as well.

All in all, the early k-buffer implementations are not ideal for scene
representation. However, they did inspire hardware innovations

which allow us to use better algorithms today (and without unde-
fined behaviour).

3.2.5 Hardware Advancements

The years 2008–2009 were quiet with regard to layered depth map
implementations. Fortunately, the same time period saw significant
hardware and API improvements. In the following technical aside,
we describe the advancements which are related to layered depth
maps.

SSBO The framebuffer provides a fixed amount of storage for
each pixel [Segal et al. 2014]. Usually, the RT attached to the frame-
buffer stores RGBA tuples. MRT allows for more advanced usage
(such as deferred shading and k-buffers) but can’t store all incom-
ing fragments in a complex scene. This is the primary reason why
the various k-buffer implementations must use a fixed k.

The shader storage buffer object (SSBO) introduced as an OpenGL
4.x extension is essentially a contiguous chunk of memory that is
shared between shader invocation [Brown et al. 2014a]. A shader
invocation can RMW any memory location of an SSBO. Contrast
this to the earlier OpenGL memory model which has always re-
stricted writes to the shader invocation’s pixel coordinates (and
where RMW resulted in undefined behaviour).

With SSBOs it is now possible to store all fragments during rasteri-
zation (Figure 7). Unlike the framebuffer, however, an SSBO does
not have any built-in synchronization between shader invocations.
An SSBO is just a chunk of memory. All synchronization must be
defined explicitly by the shader author.

Atomic Operations Fortunately, the SSBO extension also pro-
vides basic atomic operations which can be used to synchronize
shader invocations. E.g.,

1 int32_t atomicExchange(inout int32_t a, int32_t b)
2 uint32_t atomicExchange(inout uint32_t a, uint32_t b)

which atomically sets a to b and returns the old value of a.

Additionally, dedicated atomic counters introduced as another
OpenGL 4.x extension provide an efficient way to atomically in-
crement an integer from all shader invocations [Licea-Kane et al.
2012]. E.g.,

7

main()
main()

main()
main()
main()

main()

main depth_test
discard

RT

SSBO

Figure 7: Primitive processing in rasterization. Back-faces (desat-
urated primitives) are also rendered. Notice that multiple fragments
(six in this case) may map to the same pixel (grey rectangle). Each
fragment triggers a shader invocation (a call tomain). Moreover,
the shader invocations trigger in an undefined order so that any per-
mutation is possible. Pre-OpenGL 4.3 (solid arrows), fragments are
depth tested and either discarded or stored in the RT. Post-OpenGL
4.3 (dashed arrow), fragments can optionally be stored in an SSBO.
Note that the SSBO can store multiple fragments.

1 uint32_t atomicCounterIncrement(atomic_uint c)

which atomically increments c and returns the old value. Note the
special atomic_uint type which must reference an external object
(e.g., it can’t be declared locally in a function).

Both of the aforementioned extensions are now both part of the
OpenGL 4.3 Core Profile [Segal et al. 2013]. In conclusion, any
GPU that conforms to the OpenGL 4.3 specification is sufficient to
concurrently construct singly linked lists. Sufficient, because stan-
dard compliance does not guarantee a performant implementation.

For completeness it should be mentioned that there are equivalent
primitives in DirectX [Yang andMcKee 2010; Gruen and Thibieroz
2010; Thibieroz 2011]. Without loss of generality, we will use SS-
BOs for the remainder of this report.

3.2.6 Per-pixel Fixed-length Arrays (Z3 revisited)

The above-mentioned advancements allowed researchers to revisit
layered depth maps. One example is the use of an SSBO to store
per-pixel fixed-length arrays (PPFLA) of depth values [Liu et al.
2009a; Liu et al. 2010; Crassin 2010a]. This approach is similar
to Z3 but only stores a single depth value (and not the two z-value
derivatives) per fragment. Recall that Z3 stores Lk

p sequences with
a fixed k. As such, the memory layout is exactly that of Figure 6b.
The method uses three passes:

1. Clear. A count buffer of per-pixel atomic counters, count, is
reset to zero.

2. Fragment Storing. The scene geometry is rasterized and
depth values are put into SSBO memory. The memory lo-

cation can be determined from the fragment’s xy-coordinates
as k * (y * width + x) + count++. Here, width is the
viewport’s width and k is k. Note that the increment of count
must be atomic (e.g., using atomicAdd).

3. Sorting. The fragments in each layer are depth-sorted using
bubble sort.

The simplicity of the approach makes it very performant. The mem-
ory requirements depends on the size of the viewport and k. Over-
flow occurs if count becomes larger than k. The difficult part is to
find a k which matches the scene’s depth complexity. Conservative
choices of k requires a lot of memory. Most of this memory will
remain unused if the layers are sparse. Some authors therefore sug-
gest a more memory-conservative approach [Crassin 2010b] (see
Section 3.2.8).

3.2.7 Pre-sorted Per-pixel Fixed-length Arrays

The Sorting pass can be skipped by by depth-sorting during con-
struction of the PPFLA [Liu et al. 2009a; Liu et al. 2010]. Said ar-
rays are called pre-sorted per-pixel fixed-length arrays (PSPPFLA).
The key is to use insertion sort implemented with OpenGL 4.x’s
atomicMin operation

1 int32_t atomicMin(inout int32_t a, int32_t b)

which atomically sets a to min(a,b) and returns the old value of a.
With insert sort, only two passes are required:

• Clear. The per-pixel array entries are initially set to the max-
imum possible depth value, max_depth. count is cleared as
before.

• Fragment Storing. An incoming fragment is stored by go-
ing linearly through all count + 1 existing fragments (start-
ing at k * (y * width + x)) and applying incoming =
atomicMin(existing, incoming) where existing and
incoming are the existing and incoming fragment, respec-
tively. count is incremented as before.

All empty cells will contain max_depth. Initially, existing will
contain max_depth and incoming will simply be stored. As the
array grows, the Fragment Storing step will iterate from start to
end and sort the array by ascending values. Because the array is
only accessed with atomic operations, no race conditions can occur.

Serially, insertion sort algorithm has asymptotic complexity of
O(n2) where n is the number of elements. Asymptotically faster
sorting algorithms exist but insertion sort has the nice property that
it can be applied in parallel during construction. Moreover, it can
be implemented using only a single atomicMin instruction. These
properties combined mitigate the otherwise poor asymptotic com-
plexity.

The major downside to this approach is that the stored fragments are
limited to 32–64 bits of data. This is because atomicMin only exists
in 32-bit and 64-bit variants. Furthermore, the 64-bit atomicMin is
a new addition to consumer hardware and not yet wildly adopted
[Liu et al. 2010; Lefebvre et al. 2013]. Packing both the fragment’s
depth value and color into 32 bits causes artifacts due to the loss of
precision [Liu et al. 2010]. However, if only the depth value needs
to be stored (as in our use case), then 32 bits are sufficient.

While PPFLA and PSPPFLA are simple and fast, the memory re-
quirements restrict their usefulness in practice. Furthermore, we
aim to find a method that does not limit depth complexity. There-
fore, we won’t go into further details with PPFLA and PSPPFLA.

8

1.6

2.5

3.9

4.8

5.4 7.2 3.9 7.2

4.85.4

4.9

3.8

Head Indices (integer index)

List Nodes (real depth, integer next)

5 19 23

21 13 3 25

15 0 17 0 7

0 9 11

0 1 2

4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21

22 23 24 25 26

3

Figure 8: PPSLLmemory layout. This figure uses the example seen
in Figure 5. Both head indices and list nodes are stored in the same
contiguous chunk of memory. Note that this is only one permutation
out of all list node orderings.

3.2.8 Per-pixel Singly Linked Lists (A-buffer revisited)

The A-buffer also saw renewed interest. With SSBOs and the ac-
companying atomic operations, per-pixel singly linked lists (PP-
SLL) can be constructed [Yang et al. 2010; Yang and McKee 2010;
Gruen and Thibieroz 2010; Thibieroz 2011].

Construction Three passes are required: Clear, Fragment Stor-
ing, and Sorting. The method itself is relatively simple and only
spans a few lines of code. The difficult part is to arrange the various
operations to avoid race conditions. Furthermore, to ensure unique
memory allocation for each shader invocation from the SSBO.

We defer the complete technical explanation to Section 3.4.1. For
now, we will highlight the attributes that can be directly compared
to other methods. That is, the memory requirements and the sorting
approach.

Memory The OpenGL shading language (GLSL) restricts SSBO
access to array-like integer indexing. That is, pointer indirection is
not supported5. Consequently, the list nodes must reference each
other by integer indices. This is merely a technical inconvenience;
the semantics are unaffected. The head and next pointers simply
become integer indices.

The head indices are stored in one SSBO and the list nodes are stored
in another SSBO [Yang et al. 2010]. Alternatively, both head in-
dices and list nodes can be stored in the same SSBO [Lefebvre et al.
2014]. The head indices are then stored at the beginning and the list
nodes follow directly afterwards (Figure 8). An index of 0 denotes
the end of the list6.

Recall that any permutation of shader invocations is possible (Fig-
ure 7). Consequently, any permutation of list nodes is possible (one

5C-like pointer indirection is available through non-standard Nvidia ex-
tensions [Bolz et al. 2010; Brown 2012].

6This does not cause any ambiguities since the 0 index is reserved for a
head index. Thus a list node can’t refer to index 0 as if it was another node.

such permutation is shown in Figure 8). Therefore, a list’s nodes
may be far apart inmemory. E.g., the list ofL4

(1,1) in Figure 8whose
nodes are at indices 19, 7, 3, and 21. When the lists are traversed, a
node fetch is likely to trigger a cache miss which has a negative im-
pact on performance. This is not an artifact of the GPU architecture;
the very same behaviour can be observed with a CPU implementa-
tion. See Section 3.2.9 for a more memory-compact method.

While SSBOs can store vast amounts of data, they do have a fixed
size. Unlike CPU memory allocation, an SSBO must be allocated
before the shader is executed and can’t be re-allocated during shader
execution. Moreover, the scene’s depth complexity is not known
prior to the first rasterization run. Consequently, it is impossi-
ble to know how much memory to allocate for the SSBO before-
hand. Thus the client application must detect overflow and allocate
enough SSBO memory for the next frame [Yang et al. 2010]. As
such, the memory requirements are unbounded. A monotonically
increasing allocation scheme is one solution (similar to C++’s std
::vector). With such a scheme, however, a sudden spike in depth
complexity will reserve an otherwise unnecessary amount of mem-
ory. As of yet, there is no optimal solution.

In spite of all of the above-mentioned shortcomings, per-pixel
linked lists require significantly less memory in practice than, say,
per-pixel fixed-size arrays [Crassin 2010b]. Though this is not the
case if all pixels have many fragments (as in Figures 6b and 8). Un-
der practical circumstances, however, most pixels will have a small
number of fragments and per-pixel linked lists are the better choice.

Sorting Recall that the list nodes are stored in arbitrary order.
Consequently, a sorting pass is needed to depth-sort the lists be-
fore they actually conform to the Lp definition. First, the linked
lists are copied into a shader-local array. Then, an arbitrary sort al-
gorithm can be applied on the local array. Insertion sort (O(n2))
and bitonic sort (O(n log2 n)) have been suggested by the original
authors [Liu et al. 2010; Yang et al. 2010; Thibieroz 2011]. Shell
sort (O(n2)) was proposed later [Knowles et al. 2012]. As it turns
out, insertion sort outperforms the aforementioned sort algorithms
and even traditional O(n logn) sort algorithms (e.g., merge sort)
for small n [Knowles et al. 2012]. Recently, a register-based block
sort algorithmwas proposed which, allegedly, is even faster than in-
sertion sort [Knowles et al. 2014]; partly due to backwards memory
allocation [Knowles et al. 2013].

A Note on Convergence It is interesting to note how previous
ideas have converged into this unified approach. The A-buffer [Car-
penter 1984] lays the foundation by defining layered depth maps.
The R-buffer [Wittenbrink 2001] and F-buffer [Mark and Proudfoot
2001] suggest the use of a unique storage each fragment. Lastly,
the many k-buffer implementations [Callahan et al. 2005; Bavoil
et al. 2007; Myers and Bavoil 2007] highlighted the need for RMW
buffers and atomic operations in modern graphic pipelines.

Paging Storing multiple depth values per node can decrease
the memory overhead of the singly linked list approach [Crassin
2010b]. These so-called paged per-pixel singly linked lists (PPP-
SLL) require fewer nodes overall thus decreasing the memory used
by the integer indexing. However, a new auxiliary buffer must be
introduced to store the number of depth values per pixel so that the
algorithm will know when to allocate a new list node.

The paged approach may perform better than the non-paged alterna-
tive. It depends on the scene’s depth complexity and the page size.
We will not go into further detail with paging but simply mention
the approach here for completeness.

9

1.6 2.5 3.9 4.8 5.4 7.2

3.9 4.8 5.4 7.2

3.8 4.9L(1,0)
2

L(1,1)
4

L(1,2)
6

(a) Using the example seen in Figure 3. Each Lk
p sequence is stored in a

contiguous variable-length array.

1.6 2.5 3.9 4.8

5.4 7.2

3.9 7.24.8 5.44.93.8

Depth Values (real depth)
0 1 2 4 5 6 7 8 9

10 11

3

(b)Memory layout. Using the example seen in Figure 9a. TheLk
p sequences

are stored back-to-back. Not pictured is the auxiliary structure which maps
the fragments to pixels.

Figure 9: l-buffer.

Depth Ranges Using a single buffer to store all list nodes con-
serves memory. However, the high frequency of access to said
buffer may cause contention. The solution is to division the scene
into depth ranges and have a buffer for each range [Vasilakis and Fu-
dos 2013]. Thus contention is reduced as a function of the number
of depth ranges. On the other hand, more memory may be wasted
due to unfilled buffers (and non-uniform depth distribution).

As with paging, the optimal number of divisions depend on the
scene’s depth complexity. We will not go into further details with
depth ranges and merely mention it for completeness.

3.2.9 l-buffer

The layered buffer or list buffer (l-buffer) is a pointerless A-buffer
derivative [Lipowski 2010]. Like the A-buffer, the l-buffer imple-
ments Lp sequences (without a fixed k). Thus the l-buffer can store
an unlimited amount of fragments per pixel. Depth values are stored
in per-pixel contiguous variable-length arrays thus not requiring any
pointer indirection (similar to Z3). Unlike Z3 (Figure 6a), how-
ever, the length of said arrays match the actual depth complexity
(Figure 9a).

Construction A direct comparison between the A-buffer (Fig-
ure 5), Z3 (Figure 6a), and the A-buffer (Figure 9a) would seem
to strongly favor the l-buffer. The latter is seemingly the best of
both worlds: The unfixed Lp sequence from the A-buffer and the
contiguous, pointer-less layout of Z3. The downside is the compli-
cated construction.

The proposed l-buffer construction requires at least seven passes
[Lipowski 2010]. Contrast this to the PPSLL’s two-pass construc-
tion. However, the l-buffer targets OpenGL 3.x hardware which
is the main reason for the complex construction. Specifically, the
proposed l-buffer construction does not make use of either SSBOs
or atomic operations. The DF-buffer will show that OpenGL 4.x
hardware can shave off three passes. As such, the proposed l-buffer
construction is archaic. Still, it is remarkable that the l-buffer can
actually be constructed without RMW. We will give a cursory out-
line of the proposed passes for comparison with newer methods:

1. Fragment Counting. The scene geometry is rasterized into
a count buffer. The latter is a per-pixel fragment count. The
count buffer is implemented via additive stencil operations.

2. Reduction. The count buffer is reduced into a maximum per-
pixel fragment count, max_count. This is done through a se-
ries of recursive max-operations done in parallel.

3. Buffer Initialization. A layered buffer is initialized. The lay-
ered buffer stores Lk

p sequences with k = max_count. The
memory layout for the layered buffer is essentially that of Z3.

4. Fragment Storing. The scene geometry is rasterized into the
layered buffer. An auxiliary stencil buffer is used to route the
incoming fragments to consecutive layers. Note that the lay-
ered buffer may contain many null values (Figure 6a).

5. Prefix Sum. The null values must be skipped. To do so, a
prefix sum over the non-empty pixels in the layered buffer is
used to produce per-pixel offsets denoting the location of the
consecutive fragments. This requires the scene geometry to
be rasterized. The offsets are stored in a map buffer.

6. Condensation. The map buffer is used to index into the lay-
ered buffer in order to produce a dense, one-dimensional list
of fragments. The latter is called the list buffer which is the
final product. All other intermediary buffers are discarded.

7. Sorting. The fragments in the list buffer must be depth-sorted
in order to conform to the Lp definition.

Note that steps 1–3 result in the construction of aZ3-like buffer (it’s
only missing the two derivative z-values). This is interesting, since
Z3 was originally proposed as a hardware extension [Jouppi and
Chang 1999]. Unfortunately, this also implies that a fixed k is used
for the layered buffer. Thus steps 1–6 must be repeated if overflow
is detected.

Memory The l-buffer’s final memory layout is the densest yet
(Figure 9b). This picture is not entirely true, however, since some
additional data is needed to map each depth value to its correspond-
ing pixel. There are two solutions:

• Construct an offset buffer (similar to the map buffer) and use
it to index into the l-buffer (Figure 11). The required memory
is a function of the viewport size.

• Store the fragments xy-coordinates directly in the l-buffer.
The required memory is a function of the fragment count.

Both solutions require additional memory. Which approach to
choose depends on the scene’s complexity.

Even though the final memory requirements are small, the interme-
diary requirements are huge due to all the auxiliary buffers. Espe-
cially the Buffer Initialization step which requires the construction
of a Z3-like buffer.

10

Count Buffer

2 4 6
prefix sum

Prefix Sum

2 6 12
Offset Buffer

0 2 6
right shift

Figure 10: Computation of the offset buffer. Using the example
seen in Figure 3. A prefix sum followed by a right shift with zero-
saturation. Note that the right shift can be implemented as part of
the prefix sum operation.

Sorting The l-buffer authors do not suggest any sorting algorithm.
Any algorithm can be applied. E.g., a local insertion sort as used
with PPSLL.

A Note on Novelty The idea to linearize the memory layout using
a prefix sum first appeared as a hardware extension in a patent ap-
plication [Peeper 2008]. The l-buffer authors do not cite the patent
application so we can only assume that they developed their method
independently.

3.2.10 DF-buffer

The dynamic fragment buffer (DF-buffer) is essentially an l-buffer
with a more efficient construction method that utilizes OpenGL 4.x
hardware [Comba et al. 2012]. The DF-buffer is constructed in four
steps (in contrast to the l-buffer’s proposed seven steps). We outline
the steps below:

1. Fragment Counting. The scene geometry is rasterized. A
count buffer stores per-pixel atomic counters, count, which
count the number of fragments per pixel.

2. Prefix Sum. The CUDA-accelerated Thrust library is used to
compute the prefix sum of the count buffer in parallel. The
resulting offsets, offset, are stored in an offset buffer (Fig-
ure 10).

3. Fragment Storing. The scene geometry is rasterized. The in-
coming fragments are stored in the DF-buffer. The memory
location can be determined as offset + (--count). Here,
offset and count are found by a lookup into the offset buffer
and count buffer, respectively. Note that the decrement of
count must be atomic.

4. Sorting. Insertion sort is used to sort the fragments.

The Reduction step is made redundant by atomic counters. The
Buffer Initialization step has also become redundant since the layer
buffer is not needed. Furthermore, the count buffer is automatically
reset to zero due to the decrements in step three. The DF-buffer
is constructed directly in step three, so no Condensation step is
required. Note that the offset buffer is kept so that it can be used to
map each pixel to its corresponding list of fragments (Figure 11).

The l-buffer’s proposed prefix sum algorithm is actually serial (even
though it’s executed on the GPU). The DF-buffer uses a more effi-
cient parallel prefix sum instead.

Even with the above-mentioned construction optimizations, the DF-
buffer still requires two rasterization passes of the scene geometry
(the l-buffer requires at least three geometry passes). Contrast this to
the PPFLA and PPSLL which only require a single geometry pass.
Thus the latter methods may be preferable for complex geometry.
However, the DF-buffer is still the most memory efficient of the
three.

Offsets (integer index)

Depth Values (real depth)

0 2 6
0 1 2

1.6 2.5 3.9 4.8

5.4 7.2

3.9 7.24.8 5.44.93.8
0 1 2 4 5 6 7 8 9

10 11

3

Figure 11: DF-buffer memory layout. Using the example seen in
Figure 3. Note the use of the offset buffer from Figure 10.

3.2.11 S-buffer

The sparsity-aware buffer (S-buffer) is yet another l-buffer with
construction optimizations [Vasilakis and Fudos 2012]. The S-
buffer utilizes the same optimizations as the DF-buffer. In fact, the
DF-buffer authors actually cites the S-buffer as an inspiration. The
difference between the two is that the S-buffer uses another prefix-
sum implementation optimized for pixel sparsity (whenmany pixels
are without fragment).

Recall that the l-buffer computes the prefix sum serially by render-
ing the scene geometry. By rendering the scene geometry, only non-
empty pixels are affected. The prefix sum itself is calculated by a
clever use of stencil operations. The details are involved and out of
scope of this report.

Similarly, the S-buffer renders the scene geometry to avoid empty
pixels. Instead of stencil operations, however, the S-buffer proposes
to use an atomic counter. With one such counter, the prefix sum is
still serial. The idea is therefore to group the pixels and provide
an atomic counter for each group. This allows the prefix sum to
be calculated independently within each group (linearly within a
group but in parallel between groups). Then, a prefix sum is run on
the counters and the result is added to the pixels within the corre-
sponding group (so that each pixel now contains the global prefix
sum).

The combination of skipping empty pixels while still computing the
prefix sum in parallel allows the S-buffer to outperform the DF-
buffer [Vasilakis and Fudos 2012]. However, the optimal number
of pixel groups must be found empirically for each scene. Toomany
groups lead to management and space overhead. Too few groups
lead to mediocre parallelism. Note that when a single group is used,
the prefix sum is completely serial (as it is the case with the l-buffer).

3.2.12 D-buffer

The dequeue buffer (D-buffer) is the successor to the l-buffer
[Lipowski 2013] (by the same authors). Structurally, the D-buffer
is completely identical to the l-buffer. Again, the difference is the
construction method. The D-buffer authors propose three differ-
ent construction methods; each targeted at different specifications
(roughly):

• OpenGL 3.0

11

• OpenGL 3.3

• OpenGL 4.2

The OpenGL 3.0 approach is identical to the l-buffer. Likewise,
the OpenGL 4.2 approach is identical to the DF-buffer. Lastly, the
OpenGL 3.3 approach is an intermediary hybrid of the l-buffer and
DF-buffer.

As such, the main contribution of the D-buffer is the in-depth tech-
nical explanation of the three construction methods along with var-
ious micro-optimizations of said methods. Therefore, we won’t go
into further detail with the D-buffer.

3.2.13 HA-buffer

The hashed A-buffer (HA-buffer) is a hash map of depth values
[Lefebvre et al. 2013]. No depth restrictions are imposed, so the
HA-buffer stores Lp sequences (with unfixed k).

Specifically, the HA-buffer is a coherent, spatial hash map. Spa-
tial, because each fragment’s xy-coordinate is used as the hash key.
Coherent, in the sense that neighbouring keys map to neighbour-
ing values. In combination, neighbouring pixels will store data in
neighbouring memory locations (thus exploiting locality of refer-
ence).

Construction Like PPSLL, the HA-buffer only requires a single
pass over the scene geometry. The hash table itself, H , is actually
a simple contiguous array of entries stored in an SSBO. It is the
operations (described next) onH that defines the hash table.

Let h(p, a) be the hash function where p is the hash key (the frag-
ment’s linearized xy-coordinates) and a is the entry’s so-called age.
The latter is used to resolve collisions (when multiple fragments
map to the same hash value). The algorithm proceeds as follows:

1. Clear. All entries inH is set to zero.

2. Fragment Storing. Each incoming fragment is hashed,
h(p, a), with a initially being zero. Next, insertion into H
is attempted:

• No collision (existing entry is zero). Simply store the
age, a, and the fragment’s data (e.g., the depth value) in
H at memory location h(p, a).

• Collision (existing entry is non-zero). If the existing
entry is younger (smaller a) then mark it and take its
place. Otherwise (larger a), mark the incoming entry.
The marked entry ages (a = a+ 1) and is reinserted at
the next h(p, a).

The aging scheme is based on the so-called Robin Hood strategy
[Lefebvre et al. 2013]. By always evicting younger entries, themax-
imum age across the hash table is minimized. In turn, fewer rein-
sertions are required. The age test and eviction can be done simul-
taneously with a single atomicMax operation. This is both efficient
and free of race conditions.

Because the hash map is spatial, it is easy to find all the fragments
belonging to pixel, p, through iteration. That is, to compute h(p, a)
for each age, a = [0;A], whereA is a predefined max age. Thus the
HA-buffer doesn’t require additional buffers for indirection. Said
indirection is built-in.

Coherence is achieved by the choice of h,

h(p, a) = p+ oa mod |H|

where |H| is the size of the hash table (the size of the contiguous
array). oa is a predefined set of random offsets. Note that oa does
not depend on p. Thus neighbouring keys will also have neighbour-
ing entries in H . E.g., the neighbouring keys 0 and 1 will map to
the neighbouring entries h(0, a) = oa and h(1, a) = oa + 1.

Isolating p leads to an important insight

p = h(p, a)− oa mod |H|

Namely, that the entry’s location and age (h(p, a) and a) uniquely
identifies which pixel it originated from. The authors dub this the
age equivalence property. Note that |H| ≥ |V | must be true for
this to hold, where|V | is the viewport size (e.g., 800 × 640). Oth-
erwise, the pixel coordinates will overlap in H . By exploiting the
age equivalence property, the hash key, p, doesn’t need to be stored
in H (since p can be derived from h(p, a) and a). This conserves
memory.

Memory The memory requirements are very flexible. The only
invariant is that |H| ≥ |V | (for the age equivalence property) which
puts a lower bound on storage size. In practice, however, it must be
that |H| ≫ |V | sincemultiple fragments canmap to each pixel. The
optimal value of |H| must be found empirically. A large |H| will
use up a lot of memory but reduce the number of hash collisions and
thus increasing performance. Analogously, a small |H| conserves
memory but results in many collisions.

Unfortunately, there is no upper bound on |H|. Naturally, the upper
bound should be the total number of fragments but that metric is not
available during rasterization.

Sorting The observant reader may have noticed that the Sorting
step is missing. As it turns out, this step can be skipped due to the
age equivalence property. Recall that the hash key doesn’t have to
be stored inH due to the age equivalence property. Thus the entries
of H will be tuples of a, depth value, and data. By enforcing that
exact order (compressed into a uint32_t or uint64_t), the above-
mentioned hash map is automatically depth-sorted during construc-
tion. This is because the atomicMax operation will first compare
age (in the most significant bits) and then depth (in the subsequent
bits). In other words, the collision resolution step is overloaded to
also do depth-sorting (without any additional overhead). This al-
gorithm is essentially an insertion sort (the same algorithm used to
construct PSPPFLA).

The downside is that a (8 bits) and the depth value (24 bits) can just
fit into a uint32_t, leaving no room for additional data (e.g., frag-
ment color). Using a uint64_t leaves 32 bit spare for data storage.
Asmentioned previously, however, the 64-bit atomicMax operation
is a new addition to consumer hardware and not yet wildly adopted
[Liu et al. 2010; Lefebvre et al. 2013].

3.2.14 Pre-sorted Per-pixel Singly Linked Lists

Insertion sort can also be during construction of PPSLL to get
pre-sorted per-pixel singly linked lists (PSPPSLL) [Lefebvre et al.
2014]. Note that this is not referring to the earlier mention of a post-
process insertion sort. Please refer to Section 3.4.2 for the details.

3.2.15 Pre-sorted Per-pixel Variable-length Arrays

Per-pixel variable-length arrays can be pre-sorted (e.g., l-buffers,
DF-buffers, S-buffers, and depth buffers) in order to construct
pre-sorted per-pixel variable-length arrays (PSPPVLA) [Kubisch
2014]. The authors leave the implementation as an exercise for the
user. Theoretically, one could just apply the same pre-sort approach
used in PSPPFLA (see Section 3.2.7).

12

3.2.16 Further Hardware Advancements

Intel’s pixel synchronization extension [Grajewski et al. 2013] pro-
vides efficient general-purpose critical sections in fragment shaders;
exactly what is needed for parallel construction of data structures
[Salvi 2013]. Unfortunately, Intel’s pixel synchronization exten-
sion is currently only available on the latest incarnations of the In-
tel Iris and AMD Radeon GPUs [Riccio 2015]. It should be noted
that Nvidia has proposed a similar extension though with slightly
different syntax and semantics [Brown et al. 2014b]. The Nvidia
extension, however, is only available for Nvidia’s Maxwell GPUs
[Riccio 2015].

Alternatively, one can use per-pixel spin locks to synchronize the
fragment shaders [Vasilakis and Fudos 2014; Kubisch 2014]. Spin
locks, however, are detrimental to performance. One remedy is the
OpenGL thread group extension [Breton et al. 2014] which can re-
duce lock contention by filtering out so-called helper threads [Ku-
bisch 2014]. Unfortunately, said extension is Nvidia-only [Riccio
2015].

Thus there is no performant cross-vendor solution for critical sec-
tions in fragment shaders. This is why we still see a prevalent use of
low-level atomic operations such as atomicAdd, atomicMax, etc.

3.2.17 k+-buffer (k-buffer revisited)

The k+-buffer is a k-buffer which utilizes the above-mentioned crit-
ical sections to avoid the undefined behaviour of RMW [Vasilakis
and Fudos 2014]. As stated earlier, fixing k implies poor scene rep-
resentation which may be reasonable for OIT but not for our use
case. We mention the k+-buffer for completeness and because it is
the first OIT-related implementation to use general-purpose critical
sections in a fragment shader.

3.2.18 OIT-specific Methods

Some techniques and optimizations are only applicable to OIT and
not to the construction of layered depth maps. We list them here for
completeness.

Depth Peeling Depth peeling is a multi-pass technique which it-
erates over each layer (each k in Lk

p). That is, it “peels” the scene
apart layer for layer from front to back (in terms of depth). Each
layer is processed in isolation and over can be directly applied to
produce OIT [Mammen 1989; Everitt 2001]7.

Depth peeling has low memory requirements since only a single
layer needs to be in memory at a time. However, it requires k
passes over the full scene geometry which is computationally ex-
pensive. Depth peeling is OIT-specific since it doesn’t store the Lk

p

sequences in an auxiliary data structure (depth values are discarded
after each pass). Extensions exist that peels 2 layers [Bavoil and
Myers 2011], 8 layers [Liu et al. 2006] and 32 layers [Liu et al.
2009b] at a time for improved performance .

Fragment-Parallel Composite and Filter Expanding the over
operator recursively leads to an insight: OIT can be implemented
as a parallel multiplicative scan followed by a parallel additive re-
duction [Patney et al. 2010]. This decomposition increases the par-
allelism which in turn increases performance.

7Depth peeling was invented by [Mammen 1989] along with an imple-
mentation for the Stellar Graphics GS1000. The term was later coined by
[Everitt 2001] who provided an implementation for OpenGL 1.x hardware.

Alternative Blend Operators Various authors have proposed
a commutative alternative to the over operator [Meshkin 2007;
Bavoil and Myers 2011; Salvi and Vaidyanathan 2014]. When the
blend operator is commutative, no sorting is needed (and thus noLk

p

sequences). This produces incorrect yet visually convincing results.

A hybrid approach shades the nearest fragments using an Lk
p se-

quence and the farther fragments using a commutative blend oper-
ator [Maule et al. 2013].

Stochastic Transparency The alpha value is interpreted as the
probability that the fragment contributes to the pixel’s final color
[Enderton et al. 2011]. Thus no sorting is needed which increases
performance. The downside is that the resulting image contains
noise due to the stochastic sampling.

Adaptive Transparency This method maintains Lk
p sequences

with a fixed k. The novelty is the overflow handling (when the num-
ber of fragments exceed k). If overflow occurs, the least significant
fragment is merged with the incoming fragment [Salvi et al. 2011].
A fragment’s significance is a function of the fragment’s depth and
alpha value. This strategy is similar to (yet far more advanced) the
Z3 approach. Like the k+-buffer, adaptive transparency can also be
accelerated by utilizing the pixel synchronization extension [Davies
2014].

Survey A slightly outdated OIT survey provides a qualitative
comparison between most of the early methods [Maule et al. 2011].

3.2.19 Overview

A summary overview of the different layered depth map implemen-
tations can be found in Table 1. The target column indicates which
platform or API that is targeted in the reference. Note that the im-
plementation is not necessary limited to that target. E.g., PSPPFLA
which is presented as a CUDA implementation can also be imple-
mented in OpenGL 4.x.

13

Name Reference Geometry
Passes Memory Sorting Fragments

Per Pixel
Empiric

Parameters Target

A-buffer [Carpenter 1984] 1 Unbounded Pre Unlimited CPU
Early GPUs

Z3 [Jouppi and Chang 1999] 1 Bounded Pre Limited k Hardware proposal

R-buffer [Wittenbrink 2001] 1 Unbounded Pre Unlimited Hardware proposal

F-buffer [Mark and Proudfoot 2001] 1 Unbounded Pre Unlimited Hardware proposal

k-buffer [Callahan et al. 2005]
[Myers and Bavoil 2007] 1 Bounded Pre Limited k OpenGL 2.x–3.x

PPFLA
[Liu et al. 2009a]
[Liu et al. 2010]
[Crassin 2010a]

1 Bounded Post Limited k
CUDA

OpenGL 4.x

PSPPFLA [Liu et al. 2009a]
[Liu et al. 2010] 1 Bounded Pre Limited k CUDA

PPSLL

[Yang et al. 2010]
[Yang and McKee 2010]

[Gruen and Thibieroz 2010]
[Thibieroz 2011]

1 Unbounded Post Unlimited
CUDA

OpenGL 4.x
DirectX 11

PPPSLL [Crassin 2010b] 1 Unbounded Post Unlimited Page size OpenGL 4.x

l-buffer [Lipowski 2010] 3 Bounded Post Unlimited OpenGL 3.x

DF-buffer [Comba et al. 2012] 2 Bounded Post Unlimited OpenGL 4.x

S-buffer [Vasilakis and Fudos 2012] 2 Bounded Post Unlimited Number of
groups

CUDA
OpenGL 4.x

D-buffer [Lipowski 2013] 2 Bounded Post Unlimited OpenGL 2.0–4.2

HA-buffer [Lefebvre et al. 2013] 1 Unbounded Pre Unlimited |H| OpenGL 4.x

PSPPSLL [Lefebvre et al. 2014] 1 Unbounded Pre Unlimited OpenGL 4.x

PSPPVLA [Kubisch 2014] 2 Bounded Pre Unlimited OpenGL 4.x

k+-buffer [Vasilakis and Fudos 2014] 1 Bounded Pre Limited k OpenGL 4.x

Table 1: Overview of layered depth map implementations.

14

Primitive Soup Coarse Representation

Step 1:
Reduction

Step 2:
Rendering

Figure 12: Coarse scene representation in auxiliary data structure.
First, the primitive soup (wireframe) is reduced (solid arrow) into
a coarse scene representation (pixelated object) stored in an auxil-
iary data structure. Second, each primitive is rasterized in isolation
(green primitive) but can query (dashed arrow) the auxiliary data
structure.

3.3 Design

Section 3 focused on layered depth maps in the context of OIT. In
this section, wewill analyze the use of layered depthmaps as a scene
representation. Additionally, we will choose the layered depth map
implementation which best fits our requirements.

First, we show how a data structure of layered depth maps can be
used as a scene representation. Second, we list the requirements of
said data structure. Third, we go through all the layered depth map
implementations and find the best match.

3.3.1 Layered Depth Maps as a Scene Representation

The complete scene representation is given by the primitive soup
which is sent through the rasterization pipeline. As such, this prim-
itive soup is the complete information available. Unfortunately, that
complete information is not available at the time of fragment shad-
ing which is why local illumination models are normally used (Fig-
ure 2a).

The problem is that each primitive is processed in isolation. Thus
a fragment can at best get information about its invoking primitive
but not other primitives. The solution is conceptually simple (Fig-
ure 12):

1. Reduction. The primitive soup is reduced into a coarse scene
representation and stored in an auxiliary data structure.

2. Rendering. The primitive soup is rasterized as normal but can
now query the auxiliary data structure for global information.

Reduction is necessary since constructing a data structure with com-
plete information would defeat the purpose of rasterization. Specifi-
cally the low memory requirements of primitive-isolated rendering.
If complete information is available, ray-tracing is a better alterna-
tive. The extent of the reduction is specific to each auxiliary data
structure.

Section 2 gave an overview of various scene representations and the
corresponding data structures. The layered depth map is one such

data structure. It can be interpreted in two ways which are presented
next.

Point Cloud Interpretation For each view ray sent through the
image plane, the layered depth map stores all geometric intersec-
tions in the Lp sequences (Figure 4b). Practically, only the depth
values are stored but the world coordinates (WC) can readily be re-
covered [Mittring 2007]. As such, the layered depth map can be
interpreted as a three-dimensional point cloud representation of the
scene. The point cloud interpretation is useful for visualization (see
Section 3.4.5) but the directional information is lost in the process.

Ray Set Interpretation Amore practical interpretation of the lay-
ered depth map is as a set of rays and their intersections with the
scene geometry. Each pixel on the image plane (each Lp sequence)
corresponds to a ray. Thus the resolution of the layered depth map
controls the number of rays. Similarly, the ray directions are de-
termined by the view and projection matrices used to construct the
layered depth map. That is, the rays will point in the general di-
rection given by the forward vector (the view direction) of the view
matrix. The deviation from said vector depends on the projection
matrix.

With perspective projection, the rays deviate from the view direc-
tion as a function of the field of view. With orthographic projec-
tion, all the rays will be parallel with the view direction (Figure 4b).
Furthermore, orthographic projection gives a uniform ray distribu-
tion. This property ensures that geometry is sampled uniformly and
not as a function of depth. Contrast this to perspective projection
which has a denser ray distribution closer to the camera. Moreover,
orthographic projection is unbiased with respect to precision since
it produces linear depth values. Consequently, orthographic projec-
tion is the better choice for a uniform scene representation in terms
of both sample distribution and precision.

Multi-view The downside to orthographic projection is that all
rays are parallel to the view direction. As such, each Lp se-
quence only provides intersection information for the view direc-
tion. Global illumination models are usually defined as an integral
over a hemisphere. That is, global illumination requires samples
in various directions not just one. One solution is to simply con-
struct multiple layered depth maps each oriented in a different (Fig-
ure 13). Another solution is to ray-march through the layered depth
map whose orientation is closest to the sample direction [Niessner
et al. 2010].

We proceed with the multi-view approach. Note that this implies
that the sample directions will be pre-defined (one for each layered
depth map). This presents a challenge in that many layered depth
maps must be constructed to sufficiently cover the hemisphere. We
defer this discussion to Section 4.3.2.

Resolution The resolution of the layered depth map controls the
number of generated rays. Thus the resolution should be large
enough to adequately cover the whole scene. Of course, the res-
olution also has an impact on performance. Since we are using a
multi-view approach, many layered depth maps will be constructed.
As such, the resolution must be weighed against the number of view
directions to find an optimal ratio. Moreover, we already know that
the implementation will require at least one geometry pass per lay-
ered depth map (Table 1). Multiple such passes are best done in low
resolution to amortize the performance cost of rasterizing the scene
geometry. E.g., say the final image is 800 × 800 and we use 64
layered depth maps each oriented in its own direction. Then each
layered depth map should be 100× 100 for the total number of ras-

15

v1

v2 v3

Figure 13: Multiple layered depth maps each rendered from a dif-
ferent view. Here, three layered depth maps are shown correspond-
ing to three viewing directions (v1, v2, and v3). Each pixel on the
image planes (4× 4 in this case) will correspond to a ray. In prac-
tice, more layered depth maps of higher resolution are needed to
sufficiently cover the scene.

terized pixels to match the final image

100× 100× 64 = 640000 = 800× 800

Of course, the complexity of the Reduction step may differ signif-
icantly from the Rendering step. Moreover, it is not a requirement
that the pixel count matches; it is merely a heuristic to get decent
performance. In practice, the optimal ratio of resolution weighed
against the number of views is best found empirically. We defer
this empirical analysis to Section 6.

Querying The main query will be ray-scene intersection tests (as
done in ray-tracing). That is, given a ray, r = (x, d) with initial
point x and direction d, a trace should return the position of the first
geometric intersection, xf , between r and the scene geometry,

xf = trace(r) = trace(x, d)

The trace(r) query can be broken down into four steps:

1. Find Map. Find the layered depth map corresponding to d.

2. Find Pixel. Find the pixel, p, which corresponds to x in the
layered depth map.

3. Find Depth Value. Find the depth value, zx, corresponding
to x in the Lp sequence.

4. Compute Intersection. Use zx−1 to construct xf .

With orthographic multi-view layered depth maps, there is direct
mapping between the sample directions and the layered depth maps.
As such, the Find Map step is trivial. The Find Pixel step must
find the right p to sample from. The solution is to use re-projection
(as done in shadow mapping). That is, x is projected from WC into
NDC by the layered depth map’s view-projection matrix. The NDC
directly gives the position, p. In the Find Depth Value step, the
Lp = (z0, z1, z2, . . .) sequence is searched to find the depth value,
zx, which corresponds to x. The key to the Compute Intersection
step is to note that the previous depth value, zx−1, belongs to the
first intersection with the scene geometry. From zx−1 and the lay-
ered depth map’s orientation, xf can be reconstructed (Figure 14).
Please refer to the Section 3.4 for further details.

v2 v3

v1 = -d

x

xf

d

p

zx-2

zx-1

zx

Figure 14: Querying the multi-view layered depth maps along
the ray from x in direction d. First, the layered depth map cor-
responding to d is found (v1 = −d). Second, x is projected
into the layered depth map’s view to find p. Third, the Lp =
(. . . , zx−2, zx−1, zx, . . .) sequence is searched to find zx. Fourth,
the first intersection along d is at depth zx−1 from which xf can
readily be constructed.

Note that a single layered depth map oriented in direction v can ac-
tually be queried both in the v and −v direction. The small extra
step is to also find zx+1 whichwill correspond to xf in the−v direc-
tion. Algorithmically, only a single additional step has to be added.
Thus both directions can be tested simultaneously with practically
no overhead.

Please refer to Section 4.4.1 for an implementation of trace(r).

Summary Our auxiliary data structure consists of multiple low-
resolution layered depth maps each rendered from a different view
direction. This design will lay the foundation for the rest of the
report. In the next section, we will set up some additional require-
ments that will help us in determining the right implementation for
the design.

3.3.2 Requirements

The overall idea is to use layered depth maps as an auxiliary data
structure that can be queried for global information during rasteri-
zation (Figure 2c). Especially, we are interested in overcoming the
local limitation of rasterization. This leads us to the first require-
ment:

Requirement 1 The data structure must be total; include the whole
scene.

Total, in the sense that the data structure doesn’t exclude geometry
outside some bounds. Not that it should capture as much geometric
detail as possible (which we refer to as completeness). Of course,
we would prefer that the data structure also did the latter but it’s
not a necessity. In fact, geometric detail should be put up against
performance to find an optimal ratio. This leads us to the next re-
quirement:

Requirement 2 Queries on the data structure must be fast; per-
form in real-time.

Being real-time allows the data structure to compete with local il-
lumination methods. To compete with real-time methods, the data
structure must also be able to adapt to scene changes. That is:

16

Requirement 3 The data structure must be dynamic; adapt to ge-
ometric changes.

Otherwise, the global illumination might as well be computed of-
fline and baked into textures.

Secondary Requirements As stated in the introduction, we will
use OpenGL 4.x for hardware acceleration. That is, we don’t
strive to be backward compatible with earlier API versions. Con-
sequently, our data structure will require fairly recent hardware.
We do, however, strive to deliver a cross-vender solution. I.e., we
won’t limit our implementation to specific hardware by using exotic
OpenGL extensions.

3.3.3 Candidate Evaluation

Before even assessing the requirements, we can eliminate the early
methods. Namely those that target CPUs or early GPUs (the A-
buffer) and the hardware proposals (Z3, the R-buffer, and the F-
buffer). The aforementioned implementations are simply not a prac-
tical match for modern GPUs and APIs. Said implementations
merely serve as historical context in our comparative survey.

Requirement 1 Analysis Requirement 1 immediately eliminates
many candidate implementations: Those that limit the number of
fragments per pixel. Such limitations put an arbitrary bound on the
depth complexity which is in clear violation of said requirement.
This further eliminates the k-buffer, PPFLA, PSPPFLA, and the
k+-buffer.

Requirement 2 Analysis Requirements 2 is about performance
and is best evaluated quantitatively by profiling each implementa-
tion. Profiling, however, requires implementing all the candidates
which is out of scope of this report. Instead, we use the memory
layout as an approximate metric. Specifically, the amount of indi-
rection required to find a depth value for a pixel.

PPSLL and PSPPSLL store depth values in arbitrary memory loca-
tions with each depth value pointing to the next in the list (Figure 8).
Furthermore, list traversal must be done linearly so finding a depth
value is anO(n) operation in the worst case (regardless of sorting).
This, combined with the random memory access pattern (causing
cache misses) would indicate that singly linked lists are not ideal
for querying depth values.

The l-buffer, DF-buffer, S-buffer, depth buffer, and PSPPVLA all
store depth values in contiguous arrays. Furthermore, finding a
depth value in a sorted contiguous array can be done with binary
search which is an O(logn) operation in the worst case. This,
combined with contiguous storage (exploiting locality of reference)
would indicate that sorted contiguous arrays are the best option for
querying depth values.

Lastly, the HA-buffer stores depth values in a spatial, coherent hash
map. Finding a depth value requires traversing all the entries for
a pixel which is an O(n) operation in the worst case. Seemingly,
the memory access pattern is random but the coherence between
neighbouring pixels helps to keep the cache warm. Combined, this
indicates that a hash map of depth values is a fitting structure for
querying depth values. Thus the hash map lies somewhere in be-
tween singly linked lists and sorted contiguous arrays in terms of
querying performance.

Surprisingly, singly linked lists are often found to perform on par
with variable-length contiguous arrays [Knowles et al. 2012; Vasi-
lakis and Fudos 2014; Kubisch 2014]. Specifically, [Knowles et al.
2012] reports a performance difference of only 10 % in favor of

the variable-length contiguous arrays. Though much larger differ-
ences have also been reported [Vasilakis and Fudos 2012]. Note
that these reports are based on unsorted arrays used for OIT pur-
poses. As such, the results can’t be directly applied to our use case.
However, one conclusion still holds: The memory access pattern
of singly linked lists is not detrimental to performance in practice.
One explanation is that the allocation of list nodes is grouped by
the threads working on the same primitive [Knowles et al. 2014].
Thus the list nodes are actually coalesced in practice and locality of
reference can be exploited.

Requirement 3 Analysis All the considered implementations
produce static structures of layered depth maps. Indeed some im-
plementations allow depth values to be inserted after construction
but no implementation supports an efficient remove operation. Con-
sequently, all of the implementations seem to violate Requirement
3. However, if the layered depth maps are constructed each frame
then the implementation complies with Requirement 3. Thus Re-
quirement 3 should actually be evaluated by the efficiency of each
implementations’ construction method. As stated earlier, perfor-
mance is best evaluated quantitatively by profiling but this is an
immense task. Instead, we use the number of geometry passes and
the sorting requirements as an approximate metric.

The fewer geometry passes, the better performance. With this in
mind, PPSLL, PPPSLL, the HA-buffer, and PSPPSLL are the top
candidates. This is, of course, a rough heuristic since the complexity
of each pass is left out. Still, a geometry pass requires full scene
rasterization which is a significant overhead. We assume that the
combined cost of two such passes will vastly outweigh even the
most complex linked list or hash map implementation.

The sorting requirements are more difficult to assess. Post-sorting
requires that all fragments are copied to a shader-local array which
is subsequently sorted. Said array must be of fixed length, say K,
since dynamic allocation in shaders (through SSBOs) is expensive.
If there are more than K fragments, then sorting can be done in
place (in SSBO memory). However, this is detrimental to perfor-
mance [Thibieroz 2011; Knowles et al. 2012]. Even if there are
less thanK fragments, the sorting step has been observed to be the
main bottleneck in the layered depth map construction [Knowles
et al. 2012; Knowles et al. 2014]. Note that the use of a fixed K
also violates Requirement 2. Pre-sorting does not impose such a
limit. Pre-sorting, however, requires expensive atomic operations
to implement. Still, we assume that the overhead of atomic opera-
tions is much lower than the cost of a post-processing step. This is
also supported by empirical evidence in the case of PPSLL versus
PSPPSLL [Lefebvre et al. 2014]. Lastly, the post-sorting pass can
be combined with the blending pass when doing OIT. The same is
not true for our use case of layered depth map. In fact, either the
sorting must be done in place (which is expensive) or an extra pass
is needed to put the sorted values from the shader-local array back
into the layered depth map in order. Thus post-sorting is further
penalized for adding the aforementioned overhead.

3.3.4 Candidate Selection

All requirements considered, we find that PSPPSLL are the best
choice for our use case. PSPPSLL do not impose limits on the
number of fragments per pixel (Requirement 1), are fast to query
in practice (Requirement 2), and can be efficiently constructed (Re-
quirement 3).

While the l-buffer’s (and similar buffer’s) sorted contiguous arrays
are faster to query (through binary sort), we deemed the construction
costs to be too high for our purposes. Our auxiliary data structure is
based on multiple layered depth maps and for each map we pay the

17

construction costs. Thus the latter must be kept as low as possible
which is why we favor singly linked lists.

The HA-buffer is also a prime candidate which has almost identical
characteristics compared to PSPPSLL (Table 1). The only differ-
ence is that the HA-buffer relies on an additional empiric parame-
ter: The hash map size, |H|. As such, we favor the PSPPSLL since
it is one less scene-dependent parameter to worry about. Another
key factor is that PSPPSLL reportedly performs better overall than
the HA-buffer [Lefebvre et al. 2013; Lefebvre et al. 2014]. Part of
this performance difference is due to driver bugs with atomic oper-
ations which require the insertion of unnecessary memory barriers.
Consequently, the performance comparison isn’t completely fair but
definitely a practical factor to note. We too found that driver issues
impose unnecessary limits in practice (Section 3.4.3).

Completely left out by Requirement 1, are the fixed-length arrays.
These methods are otherwise prime candidates because of their un-
paralleled performance. All reports always list the fixed-length ar-
rays as one of the top performer compared to singly linked lists and
variable-length arrays [Knowles et al. 2012; Vasilakis and Fudos
2014]. If not for Requirement 1, those methods would also be good
candidates. However, even if we assume that k can be chosen so
that no fragments are omitted, the memory requirements would be
enormous. As stated earlier, most of that memory would be wasted
storing null values. With singly linked lists, exactly the right amount
of memory is used (though with overhead due to indirection).

Memory Requirements Note that we have chosen a method with
unbounded memory requirements. That is, a method for which we
do no know the memory requirements before construction. As men-
tioned earlier, dynamic memory allocation on the GPU is imprac-
tical. Our solution is instead to use a memory pool, U , for the un-
boundedmethods. LetM be the total memory of the application and
let B be the memory used by all bounded allocations (e.g., meshes,
textures, RTs). Then the pool is allocated to use all the remaining
memory,

|U | = |M | − |B|

Thus being unbounded is not concern in practice provided the ap-
plication has a memory budget (so that |M | is known). The applica-
tion should of course report an error of the memory pool overflows.
Note that the memory pool, U , may be shared between multiple un-
bounded methods.

18

Passes Storage

Clear
Screen-aligned Quad

Fragment Storing
Scene Geometry

Sorting
Screen-aligned Quad

Data Bu�er
List nodes and
head indices

SSBO

Figure 15: PPSLL construction.

3.4 Implementation

In this section, we will present an OpenGL 4.x implementation of
PSPPSLL. First, we explain how to implement PPSLL. Second,
we extend the implementation with pre-sorting. Third, we discuss
driver issues and how they can be circumvented, Fourth, we list
some practicalities that must be accounted for in the actual imple-
mentation. Fifth, we show how a layered depth map can be visual-
ized as a point cloud.

3.4.1 PPSLL Construction

The concurrent construction of singly linked lists has had a GPU
implementation for a long time [Harris 2001]. The method we de-
scribe is based on a simplification of [Harris 2001]. Specifically,
only push_front operations are supported (as the layered depth
map are reconstructed every frame). Our implementation is seman-
tically equivalent to the original CUDA implementation of [Yang
et al. 2010] but implemented using OpenGL 4.x.

Construction As mentioned earlier, only a single SSBO is re-
quired to store both head indices and list nodes (Figure 8). Still, we
logically split head indices and list nodes into two buffers:

• The head_buffer contains a head index for each pixel.

• The node_buffer contains all list nodes (fragment data and
an index to the next node).

The start of each singly linked list can be queried from the
head_buffer. Initially, all lists are empty (the head_buffer is
cleared to zero). The node_buffer is where the actual data is
stored. The head_buffer is logically a two-dimensional array
since it contains an entry for each pixel whereas the node_buffer
is a one-dimensional data array. Note that the node_buffer is
unbounded (as discussed earlier). For now, just assume that the
node_buffer is large enough to contain all the list nodes. Addi-
tionally, the method requires an atomic counter, count, initialized
to zero each frame. count will keep track of the memory used in
the node_buffer.

Three passes are required [Yang et al. 2010; Yang andMcKee 2010;
Gruen and Thibieroz 2010; Thibieroz 2011]:

1. Clear (screen-aligned quad). The per-pixel head indices are
set to zero (which denotes the end of the list).

(a) A simple fragment shader sets each head_buffer entry
to zero.

2. Fragment Storing (scene geometry). Each incoming frag-
ment is stored in the singly linked list.

(a) Allocate memory for a new list node, new_node, in the
node_buffer.

(b) Store any needed data in new_node (e.g., the fragment’s
depth value, color, etc.).

(c) Update the head index in the head_buffer to point to
new_node.

(d) Set new_node’s next index to the old head index.

3. Sorting (screen-aligned quad). The per-pixel singly linked
lists are copied into a shader-local array and subsequently
sorted.

Please refer to 3.4.1 for an overview of the passes. We skip the ex-
planation of the Sorting step since we will soon present a pre-sorted
version (Section 3.4.2). The Clear pass is trivially implemented.
The Fragment Storing pass is more involved and is explained in
detail in the following paragraphs. Before that, note that the Frag-
ment Storing step is actually a push_front operation. That is, the
head index is updated in each step.

(a) The shader invocation needs a unique place to store new_node
in the node_buffer. I.e., a unique integer index into the

node_buffer. This is the purpose of the atomic counter, count,
and can be implemented with the atomicCounterIncrement oper-
ation. I.e.,

1 uint32_t atomicCounterIncrement(atomic_uint c)

which atomically increments c and conveniently returns the
old value. Thus all that is required is to call new_node =
atomicCounterIncrement(count). Now, new_node stores a
unique integer index into the node_buffer. Note that this must be
done atomically to ensure that the shader invocation has exclusive
access to new_node. Otherwise, two shader invocations may get the
same index and corrupt the stored data.

(b) Since new_node indexes into a unique chunk of memory, the
shader invocation can safely store any fragment data without wor-
rying about data races. Thus no atomic operations are needed for
this step.

(c) The head index can be accessed via the shader invocation’s
xy-coordinates. As for the update, the helpful atomicExchange
function is needed. I.e.,

1 uint32_t atomicExchange(inout uint32_t a, uint32_t b)

which atomically sets a to b and returns the old value of a. Thus
the head index update simply becomes a call to old_head =
atomicExchange(head, next). Note that we save the old head
index, old_head, for later. Again, it is crucial that this is done atom-
ically. Otherwise, two shader invocations may attempt to set head
at the same time which results in a race condition.

(d) Simply assign new_node’s next index to old_head. This as-
signment does not need to be atomic since the shader invocation has
exclusive access to new_node. This is the same reasoning behind
step (b).

Source Code Pseudo-code for the Fragment Storing step is
given in Listing 1. Note that steps (b) and (c) have been combined.
Thus old_head is no longer needed.

19

Passes Storage

Clear
Screen-aligned Quad

Fragment Storing
Insertion sort

Scene Geometry

Data Bu�er
List nodes and
head indices

SSBO

Figure 16: PSPPSLL construction.

GLSL code for a fragment shader implementing the Fragment
Storing step is given in Listing 2. The head_buffer and
node_buffer are merged into a single data buffer in practice (Fig-
ure 8). Therefore, the allocation routine must now offset the re-
turned index to skip over the head indices. Note that the fragment
shader only writes to SSBO memory and not to the framebuffer.
Also note the qualifiers for the data buffer. The coherent key-
word ensures that reads and writes are coherent with other shader
invocations [Kessenich et al. 2014]. Practically, coherent reads and
writes defeat the cache and directly accesses the underlying mem-
ory. This ensures that the shader invocations will see the updates
to the head indices. The restrict keyword tells the compiler that
the data variable is the only way to access the underlying storage.
[Kessenich et al. 2014]. The compiler can use this information for
optimizations.

3.4.2 PSPPSLL Construction

The Fragment Storing step in PPSLL construction can bemodified
to use insertion sort and thus producing PSPPSLL [Lefebvre et al.
2014]. The new step proceeds as follows (Figure 16):

2. Fragment Storing (scene geometry). Each incoming frag-
ment is stored in the singly linked list.

(a) Allocate memory for a new list node, new_node, in the
node_buffer.

(b) Store any needed data in new_node (e.g., the fragment’s
depth value, color, etc.).

(c) Traverse the list until the stored node’s depth value is
larger than incoming fragment’s depth value.

(d) Insert new_node at this location.

Of course, the Sorting step can now be omitted resulting in two
passes total (one geometry pass). Each sub-step is explained in de-
tail in the following paragraphs.

(a) and (b) These two steps are exactly as before and doesn’t have
to be changed.

(c) The list is traversed by following each node’s next index until
either:

• The end of the list is reached.

• The stored node’s depth value is larger than the incoming frag-
ments’s depth value.

In practice, an infinite loop wraps the node iteration and a break
statement is used to end the procedure. Two variables are used

to keep track of the current node (current) and the previous node
(previous). We need to keep track of both in order to insert the
new_node into the list. Initially, previous is the head node and
current is the first node in the list, head_buffer[head].next, or
zero if the list is empty. In each iteration, the above-mentioned tests
are performed

1 // Step (c)
2 for(;;) {
3 // We are either at the end of the list or just

before a node of greater depth...
4 if (current == 0 || depth < node_buffer[current].

depth) {
5 // ...so we insert the new node here.
6 // Step (d)
7 }
8

9 // We are still searching for a place to insert
the new node...

10 else {
11 // ...so we advance to the next node.
12 previous = current;
13 current = node_buffer[current].next;
14 }
15 }

We will expand on the insertion routine in the next step.

(d) The simplest (and incorrect) approach is to store the node as
one would do in a serial implementation

1 // The new node is inserted before the current node.
2 node_buffer[new_node].next = current;
3 // The previous node is updated to the new node.
4 node_buffer[previous].next = new_node;

The first line of code is correct. Recall that the new_node is a unique
index and as such the shader invocation has exclusive access to that
part of the node_buffer. Thus only the current shader invoca-
tion will read and write to node_buffer[new_node].next. The
second line of code, however, has a race condition. The memory
at the previous index is shared between multiple shader invoca-
tions. Consequently, two shader invocation may attempt to write
to node_buffer[previous].next at the same time resulting in a
race condition.

We saw before that this can be fixed with an atomicExchange op-
eration. Applying this logic leads to the following (also incorrect)
implementation

1 // The new node is inserted before the current node.
2 node_buffer[new_node].next = current;
3 // The previous node is updated to the new node.
4 atomicExchange(node_buffer[previous].next, new_node);

Indeed, the writes to node_buffer[previous].next will now al-
ways be atomic but another race condition is still present. Say that
one shader invocation has found the right place to insert its fragment
and is just about to write to node_buffer[previous].next. Then
a second shader invocation catches up with the first, inserts its frag-
ment into the list, and exits. The first shader invocation is unaware
of the actions of the second shader invocation and proceeds with the
node_buffer[previous].next operation as if nothing had hap-
pened. Unfortunately, the work of the second shader invocation has
now been overwritten by the first and a node.

Now, we present the correct solution which makes use of an
atomicCompSwap operation. I.e.,

20

1 uint32_t pixel_index = /* get from the fragment's xy-coordinates */
2 // Step (a)
3 uint32_t new_node = atomicCounterIncrement(count);
4 // Step (b)
5 node_buffer[new_node].data = /* depth value, color, etc. */
6 // Step (c) and (d)
7 node_buffer[new_node].next = atomicExchange(head_buffer[pixel_index], new_node);

Listing 1: Pseudo-code for the Fragment Storing step of PPSLL construction.

1 struct list_node {
2 uint32_t next;
3 /* omitted */ data;
4 };
5

6 layout(/* omitted */) coherent restrict buffer data_buffer {
7 list_node data[];
8 };
9

10 layout(/* omitted */) uniform atomic_uint count;
11 uniform uint32_t width, height; // Viewport size
12

13 uint32_t allocate() {
14 // The head indices are stored first, so the returned index
15 // is offset by the viewport size.
16 return width * height + atomicCounterIncrement(count);
17 }
18

19 void main() {
20 uint32_t pixel_index = /* get from the fragment's xy-coordinates */
21 // Step (a)
22 uint32_t new_node = allocate();
23 // Step (b)
24 data[new_node].data = /* depth value, color, etc. */
25 // Step (c) and (d)
26 data[new_node].next = atomicExchange(data[pixel_index], new_node);
27

28 // Note that there are no writes to the fragment buffer.
29 // Only SSBO storage is used.
30 }

Listing 2: GLSL fragment shader for the Fragment Storing step of PPSLL construction.

21

1 uint32_t atomicCompSwap(
2 inout uint32_t a,
3 uint32_t b,
4 uint32_t c)

which atomically sets a to c if a == b. Otherwise (a != b), a is
unmodified. The operation always returns the previous value of a
(regardless of the comparison). The correct solution is

1 // The new node is inserted before the current node.
2 node_buffer[new_node].next = current;
3

4 /* barrier */
5

6 // The previous node is updated to the new node.
7 uint32_t previous_next = atomicCompSwap(
8 node_buffer[previous].next,
9 current,
10 new_node);
11

12 // The atomic update occurred...
13 if (previous_next == current)
14 // ...so we are done.
15 break;
16 // Another thread updated node_buffer[previous].next

before us...
17 else
18 // ...so we continue from previous_next
19 current = previous_next;

The update on the previous is now just attempted with the condi-
tional atomicCompSwap operation. If the update occurred, the in-
sertion is done. If the update fails, some other shader invocation
must have caught and the list traversal simply continues from the
newly inserted node.

After a successful atomicCompSwap operation, the inserted node is
made visible to other shader invocations. Therefore, it is impor-
tant that the write to node_buffer[new_node].next occurs before
the atomicCompSwap operation. Otherwise, a second shader invo-
cation may catch up and read node_buffer[new_node].next be-
fore it has been written to by the first shader invocation. This leads
to undefined behaviour. Theoretically, the compiler (or instruction
pipeline) may reorder the instructions so that the write occurs after
the node has been made visible. Thus for complete conformance, a
memoryBarrier() should be inserted at the /* barrier */ line.
In practice, however, it is not always necessary to add the mem-
ory barrier as some systems do not reorder the critical instructions
anyhow. For those systems, the barrier can be omitted for added
performance.

Finiteness Having an infinite loop in a shader may seem intimi-
dating at first. The shader is, however, guaranteed to finish in a fi-
nite number of steps. This is because a shader invocation never loses
progress. Progress may be stalled due to overlapping insertions (at
the atomicCompSwap operation) but the stalled shader will always
pick up from the newest update (the value of previous_next). As
such, the insertions will at worst be executed sequentially. Fortu-
nately, this is not the case in practice. We explore this topic further
in the next paragraph.

Lock-free The algorithm finishes in a finite yet indeterminate
number of steps. Indeterminate, since some steps may be repeated
due to concurrent updates. Thus the total number of steps required
for a single insertion is not known beforehand. However, finite-
ness guarantees that the algorithm terminates eventually. In other

words, it is a lock-free algorithm (though not wait-free). Contrast
this to algorithms which rely on critical sections (and hence locks).
The fine-grained atomic operations of the Fragment Storing step
allows for concurrent insertions which in turn increases the paral-
lelism. A critical section around the loop, while intuitive and sim-
ple, would effectively make the Fragment Storing step sequential.

Source Code GLSL code for a fragment shader implementing
the updated Fragment Storing step is given in Listing 3. Again,
the node_buffer and head_buffer is merged into a single data
buffer in practice.

3.4.3 Driver Issues

TheGLSL code provided in Listing 3may need furthermodification
to work. We found that the atomic operations had race condition is-
sues for seemingly random combinations of resolution and the num-
ber of layered depthmaps being constructed. This happened on both
an Nvidia GeForce GTX 480 (driver version 344.75) and GeForce
GTX 780 Ti (driver version 347.25). Driver version 347.25 is the
latest at the time of writing. In practice, this caused random nodes
to be dropped from the layered depth map. Note that this is not due
to omitting the memory barrier. The results were the same with the
memory barrier left in. In fact, we tried inserting memory barriers
after every statement to no avail.

The workaround is to replace a read operation with an unnecessary
atomic operation. Specifically, we replaced the line

1 current = data[current].next;

with

1 current = atomicAdd(data[current].next, 0);

in the else statement inside the loop. Both lines are semantically
equivalent. Furthermore, there is no race condition at that line. Still,
using the atomicAdd circumvented the issues in practice. First, we
suspected that the compiler must have reordered instructions and
that the atomicAdd operation had forced the correct ordering. How-
ever, a quick look at the assembly refutes this explanation. The fol-
lowing fragment is an assembly excerpt of the else statement using
a plain read

1 ELSE;
2 MUL.S R0.w, R0.x, {12, 0, 0, 0}.x;
3 MOV.U R0.y, R0.x;
4 MOV.U R0.x, R0.w;
5 LDB.U32 R0.x, sbo_buf0[R0.x];
6 ENDIF;

The following assembly is the same else statement but using the
atomicAdd operation

1 ELSE;
2 MUL.S R0.w, R0.x, {12, 0, 0, 0}.x;
3 MOV.U R0.y, R0.x;
4 MOV.U R0.x, R0.w;
5 ATOMB.ADD.U32 R0.x, {0, 0, 0, 0}, sbo_buf0[R0.x];
6 ENDIF;

Note that no instructions have been re-ordered in the assembly. The
only difference is that the LDB.U32 instruction has been replaced
with ATOMB.ADD.U32. The remaining assembly in its entirety is
completely identical. Still, it is possible that some instructions are
reordered at run-time in the GPU’s instruction pipeline. However, a
memory barrier should prevent such reordering (andwe tried adding
memory barriers to no avail).

22

1 struct list_node {
2 uint32_t next;
3 /* omitted */ data;
4 };
5

6 layout(/* omitted */) coherent restrict buffer data_buffer {
7 list_node data[];
8 };
9

10 layout(/* omitted */) uniform atomic_uint count;
11 uniform uint32_t width, height; // Viewport size
12

13 uint32_t allocate() {
14 // The head indices are stored first, so the returned index
15 // is offset by the viewport size.
16 return width * height + atomicCounterIncrement(count);
17 }
18

19 void main() {
20 uint32_t pixel_index = /* get from the fragment's xy-coordinates */
21 // Step (a)
22 uint32_t new_node = allocate();
23 // Step (b)
24 data[new_node].data = /* depth value, color, etc. */
25

26 // Start with the head node
27 uint32_t head_node = width * height + pixel_index;
28 uint32_t previous = head_node;
29 uint32_t current = data[head_node].next;
30

31 // Step (c)
32 // Insert the new node while maintaining a sorted list.
33 for (;;)
34 // We are either at the end of the list or just before a node of greater depth...
35 if (current == 0 || depth < data[current].depth) {
36 // Step (d)
37 // ...so we attempt to insert the new node here. First,
38 // the new node is set to point to the current node. It is crucial
39 // that this change happens now since the next step makes
40 // the new node visible to other threads. That is, the new node must
41 // be in a complete state before becoming visible.
42 data[new_node].next = current;
43 // Memory barrier omitted for added performance.
44

45 // Then the previous node is atomically updated to point to new node
46 // if the previous node still points to the current node.
47 // Returns the original content of data[previous].next (regardless of the
48 // result of the comparison).
49 uint32_t previous_next = atomicCompSwap(data[previous].next, current, new_node);
50

51 // The atomic update occurred...
52 if (previous_next == current)
53 // ...so we are done.
54 break;
55 // Another thread updated data[previous].next before us...
56 else
57 // ...so we continue from previous_next
58 current = previous_next;
59 // We are still searching for a place to insert the new node...
60 } else {
61 // ...so we advance to the next node in the list.
62 previous = current;
63 current = data[current].next;
64 }
65 }

Listing 3: GLSL fragment shader for the Fragment Storing step of PSPPSLL construction.

23

Consequently, we can only explain the race condition as a driver is-
sue. Such issues with atomic operations have been reported before
[Lefebvre et al. 2014]. When implementing PSPPSLL and the HA-
buffer, the authors found that some necessary barriers could be left
out but some redundant atomic operations had to added. Our find-
ings agree with theirs completely. It’s an unfortunate state of affairs.
Fortunately, the issues can be circumvented though it’s not without
penalty. The redundant atomic operations slows down shader exe-
cution. Like [Lefebvre et al. 2014], we also saw significant slow-
downs due to the driver issue workarounds (Section 6.3).

As we mentioned to begin with, the above-mentioned issues only
occurs for configurations. In practice, we are fortunate that the issue
only affected few of our test cases. However, the issues do impose
unnecessary overhead due to the workaround in the cases that are
affected.

3.4.4 Practicalities

Memory Allocation Until now, we have deferred the issue of al-
locating memory for the data buffer. In practice, we set the size
statically, using a heuristic |U | (see Section 3.3.4) based on the
scene’s size on disk and the available VRAM. A more scalable ap-
proach would be to allocate more memory if overflow occurred in
the previous frame (similar to C++’s std::vector). Overflow can
be detected by reading the count variable in the client application.

Multi-view The above-mentioned procedure describes how to
construct a single layered depth map. However, we want to con-
struct multiple layered depth maps each using a unique orientation.
One solution would be to simply allocate an array of SSBOs with
an entry for each layered depth map. However, OpenGL imposes
implementation-defined restrictions on static arrays. Thus the solu-
tion would work but is not scalable.

Our approach is to use a single SSBO and instead provide off-
sets to where each layered depth map begins. A total data off-
set, total_data_offset, is used for the allocations. Initially,
total_data_offset is zero. After constructing each layered
depth map, the client application reads back count and adds it
total_data_offset. I.e.,

1 total_data_offset += count + width * height

Note that the total_data_offset is also offset by width *
height to account for the head indices. The only change to the
GLSL code is the allocate function which now becomes

1 uniform uint32_t total_data_offset;
2

3 uint32_t allocate() {
4 return total_data_offset +
5 atomicCounterIncrement(count);
6 }

This change is applicable to both PPSLL and PSPPSLL construc-
tion.

An array of of offsets, data_offsets, records each layered depth
map’s individual offset into the data buffer. The data_offsets is
used later to retrieve the list nodes.

Client Application Memory Barriers The client application also
need a memory barrier. Specifically, a call to glMemoryBarrier
after the layered depth maps have been created. The full call is

1 glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT)

which makes the SSBO contents visible to subsequent shaders.

3.4.5 Point Cloud Visualization

We now show how a layered depth map can be visualized as a point
cloud. This visualization is intended to showcase how the layered
depth map can be queried in practice. Simultaneously, it provides a
simple middle step before we present the global illumination meth-
ods. Rendering the point cloud is done in four sub-steps:

1. Point Splatting (screen-aligned quad). Render each entry in
the Lp as a point.

(a) Retrieve the next depth value, depth, from the Lp se-
quence.

(b) Reconstruct the position inWC, wc_sample_position,
from the depth and the layered depth map’s orientation.

(c) Project wc_sample_position into the user’s view.

(d) Splat the projected point into an glsssbo.

We describe each subset in detail in the following paragraphs

(a) First, the start of the list, current, is found via the head node

1 // Retrieve the first node
2 uint32_t heads_index = data_offset + pixel_index;
3 uint32_t current = data[heads_index].next;

where pixel_index can be found from the fragment’s xy-
coordinates and data_offset denotes the offset into the data
buffer (which stores the data of all layered depth maps). The list
traversal itself is straightforward

1 const int max_list_length = 200;
2 int list_length = 0;
3

4 // Iterate the list
5 while (0 != current && list_length++ <

max_list_length) {
6 // Step (a)
7 float depth = data[current].depth;
8 // Next node
9 current = data[current].next;
10

11 // Steps (b), (c), and (d)
12 }

The max_list_length can be used to control the number of points
generated.

(b) This step is easy since we use orthographic projection.

1 // Step (b)
2 vec3 view_direction = (
3 forward * depth +
4 right * horizontal_scale * ndc_position.x +
5 up * vertical_scale * ndc_position.y);
6 vec3 wc_sample_position = wc_view_position +

view_direction;

The view vectors are given in another buffer object. The
ndc_position variable is the current pixel’s position in NDC (the
pixel’s position on the image plane).

24

(c) The projection code is straightforward but lengthy. Further-
more, it is a recurring procedure so we have put it in its own listing
(Listing 4). Using said procedure, step (c) is quickly done.

1 // Step (c)
2 ivec2 sc_sample_position;
3 if (project_wc_to_sc(wc_sample_position, user_view,

sc_sample_position)
4 // Skip clipped points.
5 continue;

(d) Lastly, the point must be rendered. We utilize an SSBO-
backed buffer, point_cloud_image, to store the rendered point
cloud. Note that we can’t simply write to the framebuffer since
such writes are limited to the current pixel’s coordinates. Instead
we splat the sc_sample_position into the point_cloud_image
buffer and let said buffer serve as our image store.

1 // Step (d)
2 uint32_t index = sc_sample_position.x +

sc_sample_position.y * user_view.dimensions.x;
3 point_cloud_image[index] = color;

The color variable can be based on any metric (e.g., the depth
value, the layered depth map’s ID, etc.). We simply use a static
color to test the visualization.

Source Code The complete GLSL source code can be found in
the appendix.

Results Figure 17 contains the point cloud visualizations of three
different layered depth maps each oriented in a different direction.
Note that the points are not depth-tested and thus also reveals oc-
cluded geometry. This results in an x-ray-like effect. E.g., in the top
view (Figure 17a) the second floor of the sponza atrium is clearly
visible. The layered depth maps use axis-aligned viewing direc-
tions. This highlights an important point: The layered depth map
doesn’t store fragments which are parallel to the view direction.
E.g., in the side and forward view (Figures 17b and 17c), the floor is
clearly not present in the layered depth maps since it is parallel with
both directions. This is another reasonwhy amulti-view approach is
needed: To sample all surfaces regardless of their orientation. The
three layered depth maps of Figure 17 combined provides a decent
scene coverage but not individually.

(a) Top view.

(b) Side view.

(c) Forward view.

Figure 17: Point cloud visualizations of layered depth maps. Each
sub-figure uses a different view direction. The scene is the Crytek
sponza. The point cloud rendering (white points) is overload the
flat-shaded geometry.

25

1 // Projects a position from world coordinates into screen coordinates corresponding to the given view. Returns
false if the given position is outside of the user's view's bounds.

2 bool project_wc_to_sc(in vec3 wc_position, in view_type view, out ivec2 sc_position) {
3 // World coordinates -> Clip coordinates
4 vec4 cc_position = view.view_projection_matrix * vec4(wc_position, 1.0);
5 // Clipping
6 if (cc_position.x > cc_position.w || cc_position.x < -cc_position.w
7 || cc_position.y > cc_position.w || cc_position.y < -cc_position.w
8 || cc_position.z > cc_position.w || cc_position.z < -cc_position.w)
9 return false;
10 // Clip coordinates -> Normalized device coordinates [-1;1]^3
11 vec3 ndc_position = cc_position.xyz / cc_position.w;
12 // Normalized device coordinates -> Texture coordinates [0;1]^2
13 vec2 tc_position = (ndc_position.xy + vec2(1.0)) * 0.5;
14 // Texture coordinates -> Screen coordinates [0;width]x[0;height]
15 sc_position = ivec2(tc_position * view.dimensions);
16 return true;
17 }

Listing 4: GLSL projection routine. I.e., a transformation from WC to screen coordinates (SC).

26

4 Ambient Occlusion

In this section, we demonstrate how our auxiliary data structure of
layered depth maps can be used to compute AO. First, the back-
ground section will explain the theory behind AO. Second, previ-
ous work is presented on both real-time computation of AO. Third,
we design an AOmethod using our auxiliary data structure. Fourth,
implementation details are explained.

4.1 Background

This section will explain the mathematical model behind AO and a
practical variation of said model for real-time rendering.

4.1.1 Ambient Occlusion

Recall the rendering equation [Kajiya 1986] which models light
transport,

Lo(x, ωo)

= Le(x, ωo) +

ˆ
S
fs(x, ωo, ωi)Li(x, ωi) |cos θi| dωi (1)

where Lo is the outgoing radiance
[
Wm−2 sr−1] from position x

in direction ωo. The Le term is the emitted radiance (usually from
the surface of a light source). The integral is over all directions,
ωi, in the unit sphere, S. The f term is the bidirectional scattering
distribution function

[
sr−1] which models light-surface interaction

at x. The Li term is the incoming radiance (from all the directions
ωi). Lastly, θi is the angle between ωi and the surface normal, n, at
x. Please refer to Figure 18 for an overview.

Equation 1 is general-purpose and can model various light transport
phenomena. It is also very complex to evaluate due to the inte-
gral. Usually, Monte Carlo integration approach is used in offline
rendering [Pharr and Humphreys 2004]. Such integration methods
are seldom feasible in real-time rendering. Instead, assumptions are
made which simplifies Equation 1 to the point that it can be easily
integrated. The first such assumption is:

Assumption 1 Surfaces do not emit light.

Assumption 1 eliminates the Le term from Equation 1. However,
a few special surfaces must emit light since the scene rendered im-
age would otherwise be completely dark. The solution is to treat

the emitting surfaces specially and render them with another model.
Furthermore, it is often the case in real-time rendering that surface
emission is replaced altogether with analytical non-physical light
models (e.g., point lights) [Akenine-Möller et al. 2008].

Another assumption is:

Assumption 2 Surfaces are purely reflective.

Assumption 2 halves the integral domain from the unit sphere, S,
to the unit hemisphere, H, oriented in direction of the surface nor-
mal, n. That is, all directions, ωi, which penetrate the surface at
x are discarded. Only reflective directions, ωi, remain. Again, all
surfaces with scattering properties are then treated specially and ren-
dered with another model. Furthermore, the bidirectional scattering
distribution function, fs, can be replaced with the bidirectional re-
flectance distribution function

[
sr−1], fr , since only reflection is

possible.

Assumptions 1 and 2 are fairly common in real-time rendering. An-
other simplification is to split illumination into two groups: Direct
lighting and indirect light. The former is the light which has traveled
directly from the light source. The latter is all other light (e.g., light
which has undergone reflection, refraction, scattering, etc.). The
two groups are then modelled separately so that further assumptions
can be applied individually. The following assumption are specific
indirect light in the context of AO:

Assumption 3 Surfaces are Lambertian.

A Lambertian surface is isotropic; it scatters light equally in all di-
rections [Pharr and Humphreys 2004]. In other words, fr only de-
pends on the surface position, x. Moreover, if ρd(x) is the diffuse
reflection coefficient for the surface at x, then fr(x) = ρd(x)

π
[Pharr

andHumphreys 2004]. Note that Assumption 3 implies Assumption
2. We distinguish between the two for pedagogical purposes.

The last assumption is similar to Assumption 3:

Assumption 4 Indirect light is isotropic.

That is, the indirect light is uniformly incident. In other words, Li

is constant in all unoccluded directions.

All assumptions combined leads to the following simplification of
Equation 1

Lo(x, ωo) =
ρd(x)

π

ˆ
H
Li(x, ωi) cos θidωi (2)

Note that the constant fr term has been moved outside the integral
and the integration domain is truncated toH. Because of the latter,
it is no longer necessary to take the absolute value of the cosine
term. Now, the key to AO is to split Li into two terms:

Li(x, ωi) = L∗
i V (x, ωi) (3)

where L∗
i is constant (due to Assumption 4). V is the so-called

visibility function

V (x, ωi) =

{
0 Ray from xin direction ωiintersects the scene
1 Otherwise

(4)
V accounts for the occlusion so that L∗

i only contributes in all the
unoccluded directions. Equation 2 can now be simplified further

Lo(x, ωo) =
ρd(x)

π
L∗

i

ˆ
H
V (x, ωi) cos θidωi

Lo(x, ωo) = ρd(x)L
∗
iAO(x)

27

x

n

ωo ωiѲ

Figure 18: The variables used in the rendering equation. Only a
single direction, ωi has been shown (pointing towards the light).
Any direction in the unit sphere can be chosen for ωi.

where
AO(x) =

1

π

ˆ
H
V (x, ωi) cos θidωi (5)

Equation 5 is the ambient occlusion term [Zhukov et al. 1998; Lan-
dis 2002]8. The name itself originates from older terminology. Am-
bient light is simply what today is mostly referred to as indirect light
[Cook and Torrance 1982]9. Today, the term ambient light is mostly
used to describe indirect light under assumptions 1–4.

Note that AO ∈ [0; 1] and is dimensionless. The unoccluded and
occluded hemisphere has AO = 1 and AO = 0, respectively. This
might be counter-intuitive since the term is called ambient occlu-
sion and yet the definition is more naturally interpreted as ambient
visibility. Some authors rectify this by inverting the definition to

AO(x) = 1− 1

π

ˆ
H
V (x, ωi) cos θidωi

or swapping the cases in the definition of V [Bavoil et al. 2008]. We
do not. The form given in Equation 5 will be used for the remainder
of this report.

4.1.2 Ambient Obscurance

The original formulation of Equation 5 is slightly more general
[Zhukov et al. 1998]

AO(x) =
1

π

ˆ
H
V (x, ωi, d) cos θidωi (6)

where d is the distance from x to the first intersection in direction
ωi. As such, V is modified to be an attenuation function. V must
abide by the following requirements:

• V ∈ [0; 1].

• V must be monotonically increasing.

8The general model (Section 4.1.2) was invented by [Zhukov et al.
1998]. The term ambient occlusion was coined by [Landis 2002].

9In fact, [Cook and Torrance 1982] presents a term called f which is
the precursor to the modern AO definition.

Otherwise, V can be chosen freely. A third requirement can be
added to limit the maximum extent of V :

• V (·, ·, dmax) must return 1 beyond a certain distance, dmax.

The last requirement is popular in real-time rendering (Section
4.2.3). This is because the tracing radius can be limited to a finite
distance. Note that V (x, ωi) is a special case of V (x, ω, d) where
dmax = ∞. When V is attenuated, the term in Equation 6 is known
as ambient obscurance (AO). Note the ambiguous acronym.

The attenuated version of V is not intended to be physically cor-
rect. It is merely used to overcome some practical limitations of the
unattenuated version. Specifically, to limit the extent of V so that
intersection tests can be limited to a finite search radius. Moreover,
the attenuated version gives additional control to artists and can be
tweaked according to aesthetics. Again, we want to stress that this
added control is not physically based.

Lastly, it should be noted that some authors use the terms ambient
occlusion and ambient obscurance interchangeably. We follow that
convention and let the context solve the ambiguity. I.e., whether
V (x, ωi) or V (x, ωi, d) is used.

28

4.2 Previous Work

This section will explain how the integral in Equation 6 has been
computed previously. First, we describe a simple solution which
used to be popular in real-time rendering. Second, we describe the
Monte Carlo estimator. Third, we look into screen-space methods.
Fourth, methods related to layered depth maps are presented.

4.2.1 Constant Ambiance

The simplest solution is simply to use a constantAO term. This ap-
proach avoids computing the integral in Equation 5 altogether which
is the cheapest option performance-wise. As such, it has been used
in real-time rendering for a long time [Akenine-Möller et al. 2008].
However, the result is flat-shaded surfaces since the model lacks
any kind of directionality.

4.2.2 Monte Carlo Integration

An alternative is to choose sample directions, ωi, which represents
the hemisphere H. As mentioned earlier, this is often done using
Monte Carlo integration in offline use. The Monte Carlo estimator
[Pharr and Humphreys 2004] is

ˆ
g(x)dx ≈ 1

N

N∑
i=1

g(Xi)

p(Xi)
(7)

where N is the number of samples andXi is a sample from the in-
tegration domain. The probability density function (PDF), p(X),
denotes the probability forX to be chosen from the integration do-
main. The simplest PDF is for the uniform distribution where all
samples are equally probable to be chosen. For choosing directions
on the unit hemisphere,H, said PDF is

p(ω) =
1

AH
=

1

2π

whereAH = 2π is the area of the unit hemisphere. Applying Equa-
tion 7 to the AO term of Equation 6 yields that

AO(x) ≈ 1

πN

N∑
i=1

V (x, ωi, d) cos θi
p(ωi)

=
AH

πN

N∑
i=1

V (x, ωi, d) cos θi

=
2

N

N∑
i=1

V (x, ωi) cos θi (8)

where each direction, ωi, is sampled from the unit hemisphere uni-
formly at random10. The intersection test in V can be implemented
with ray-tracing [Landis 2002].

Importance Sampling Alternatively, one can sample from the
cosine-weighted hemisphere [Pharr and Humphreys 2004]. The
PDF for the latter is

p(ω) =
cos θ
π

where θ is the angle between ω and the normal which defines the
hemisphere. This sampling strategy is known as importance sam-
pling. The idea is to choose a PDF which has similar properties to
the function g in Equation 7. The purpose is to reduce variance in

10Note that the subscript i is now used to index the sample. Beforehand,
the i was used to indicate that ω was the incoming direction.

the result. In the case of AO, importance sampling can also simplify
the computation. E.g., for the cosine-weighted hemisphere

AO(x) ≈ 1

πN

N∑
i=1

V (x, ωi, d) cos θi
p(ωi)

=
1

N

N∑
i=1

V (x, ωi, d) (9)

Note that both π and the cosine term cancel out.

4.2.3 Screen-space Methods

The aforementioned method uses ray-tracing to evaluate V . Thus it
is not directly applicable to rasterization. Instead, so-called screen-
space (or image-space) methods are used. Said methods typically
use the depth map as a coarse scene representation from which
global information can be queried [Shanmugam and Arikan 2007;
Mittring 2007]. These methods are known as SSAO methods.

Point Sampling The initial approach was to estimate the AO
term in Equation 6 using the following approximation [Shanmugam
and Arikan 2007; Mittring 2007]

AO(x) ≈ 1

N

N∑
i=1

V ∗(xi, di) (10)

where xi are sample positions chosen uniformly at random in a
sphere of radius dmax around x. di is the distance between xi and x.
There aremany noteworthy differences to the analytical formulation
of AO. First, all directionality has been taken out of the problem.
Consequently, this approximation is missing the cosine term which
usually weighs each sample. Second, the visibility function, V , has
been replaced with V ∗

V ∗(x) =

{
0 If xis occluded according to the depth map
1 Otherwise

In practice, the occlusion test is performed by comparing x’s depth
value with the corresponding depth value in the depth map. Note
that V ∗ is not attenuated. Instead, dmax is used to control the spread
of the samples. A small spread localizes depth map accesses and
thus increases performance. Third, samples are chosen in sphere
and not a hemisphere as dictated by Equation 6. Thus half of the
samples are expected to be occluded even on a flat surface. To com-
pensate, 1

2
is added to the result.

Due to the above points, Equation 10 is a very coarse approximation
of theAO of Equation 5. As such, it is best interpreted as an artistic
interpretation of AO. Still, SSAO is used in practice because of its
good performance characteristics [Mittring 2007].

Horizon Sampling Another screen-space approach approximates
AO as a function of the unoccluded horizon [Bavoil et al. 2008].
It is a high quality screen-space approximation so we will derive
it here. First of all, the definition of Equation 6 must be double
inverted

AO(x) = 1− 1

π

ˆ
H
(1− V (x, ωi)) cos θidωi

Note that equality still holds (see the appendix for a short proof).
The first approximation is

AO(x) ≈ 1− 1

2π

ˆ
H
(1− V (x, ωi)) dωi

29

φ

α

n

t
t

h
h

Figure 19: Overview of the HBAO method.

Notably missing is the cosine term inside the integral which is com-
pensated for by the division with two. Again, this coarse approxi-
mation is best interpreted as an artistic interpretation. The next step
is to split the integral over directions into two integrals over the cor-
responding spherical coordinates

AO(x) ≈ 1− 1

2π

ˆ 2π

ϕ=0

ˆ π
2

α=0

(1− V) cosαdαdϕ

To each ϕ (the azimuth angle) corresponds a 2D slice of the hemi-
sphere. The inner integral usingα (the elevation angle, α = π

2
−θi)

is within said slice. Thus the inner integral can be interpreted as a
measurement of the occluded horizon within said slice. Occluded,
since the inner integral is over (1− V) andV = 0 denotes occluded
directions. Now, assume that the occluded horizon is bounded
above t < α < h for some t and h. Thus it must be that the
(1− V) is 0 outside those bounds. This information simplifies the
inner integral to

AO(x) ≈ 1− 1

2π

ˆ 2π

ϕ=0

ˆ h(ϕ)

α=t(ϕ)

cosαdαdϕ

= 1− 1

2π

ˆ 2π

ϕ=0

(sin(h(ϕ))− sin(t(ϕ))) dϕ

Note that t and h are functions of ϕ since they depend on how the
hemisphere is sliced. The last approximation is to use the Monte
Carlo estimator (Equation 7) for the remaining integral. Azimuth
directions are chosen uniformly at random so p(ϕ) = 1

2π
. The

integral then becomes

AO(x) ≈ 1− 1

2πN

N∑
i=1

sin(h(ϕi))− sin(t(ϕi))
1
2π

= 1− 1

N

N∑
i=1

sin(h(ϕi))− sin(t(ϕi)) (11)

where N is the number of samples. Equation 11 models what is
known as horizon-based ambient occlusion (HBAO).

In the aforementioned derivation, t and h were just assumed to
be known. Theoretically, the horizon should be bounded between
0 < α < αhorizon for some horizon angle αhorizon. In practice,
however, sampling for the upper bound is done in screen-space (i.e.,
in the view plane). Thus the bounds must be offset to t < α < h to
compensate. t is be the angular offset from the view plane (defined
by the view direction) to the surface plane (defined by the normal at
x). h is found via ray-marching the depth map in direction ϕ. Let
the number of ray-marching steps be S and the marching distance
be dmax. Thus the method depends on three parameters: N , S, and
dmax. Note how dmax has been worked into the approach in order

Figure 20: Breakdown of the continuous height field assumption.
The depth values (circles) stored in the depth map do not adequately
represent the scene. The area shown in red is assumed to be oc-
cluded even though it is not.

to limit the extent of the ray-marching. Please refer to Figure 19 for
an overview.

Analogously, the attenuated version of V can be used. There is
also an earlier horizon-based approach where the cosine term is not
approximated away [Dimitrov et al. 2008]. This approach, however,
has seen little practical application.

Summary There are many other variations of SSAO [Filion and
McNaughton 2008; Loos and Sloan 2010; McGuire et al. 2011; Mit-
tring 2012]. Common for them all is that they fit within a real-time
render budget both in terms of performance and memory use. We
have similar requirements for our AO model. Therefore, we will
implement one screen-space approach so that we can compare it to
our own method. Specifically, we will implement HBAO since it
close (relatively few approximations) to the original definition of
AO.

4.2.4 Using Layered Depth Maps

The screen-space methods mentioned before all used the depth map
as an auxiliary data structure. This has notable limitations. Specif-
ically, the height-field is assumed to be continuous [Bavoil et al.
2008]. This assumption fails when an increase in the depth values
between two pixels is not due to steep geometry but due to spa-
tial disconnection (Figure 20). In other words, the depth map is a
very coarse scene representation. Instead, a layered depth map can
be used. It does not require the continuous height-field assumption
since it also captures occluded geometry.

Extending the Screen-space Methods One approach is to use
the model of an SSAO approach as a basis but using a layered depth
map for lookups [Shanmugam and Arikan 2007; Bavoil and Sainz
2009; Bauer et al. 2013; Liu et al. 2013]. Any basis model is appli-
cable. We’ll use Equation 10 as an example. First, a single layered
depth map is constructed from the user’s view direction instead of
adepth map. The key difference is that V ∗ now iterates through
all layers of the layered depth map in order to determine whether
a sample is occluded. Contrast this to the regular approach where
only the first layer is tested.

In conclusion, the layered depth map provides more geometric in-
formation compared to the depth map. The downside is the added

30

performance cost due to both the construction and sampling of the
layered depth map [Bauer et al. 2013]. Another advantage is that
the AO can be combined with OIT in a hybrid method [Bauer et al.
2013].

Ray-tracing Methods During the discussion of SSAO methods,
we hinted that computing V with ray-tracing was limited to offline
methods. Fortunately, this is not the whole truth. From the dis-
cussion in Section 3.3, we already now that layered depth map can
be used for intersection queries. Moreover, there already exist hy-
brid approaches which combine rasterization with elements of ray-
tracing using layered depth maps. These hybrids are not limited to
AO but can solve many different light transport problems. There-
fore, we defer the discussion of these methods to Section 5.2. We
will, however, hint at how this can be done in the next section. Thus
said section serves as amiddle step before we exploremore complex
approaches.

31

4.3 Design

In this section, we will design a method to compute AO in rasteri-
zation with layered depth maps. First, we connect the theory from
Section 3.3 with the theory of AO. Second, we explain our sampling
strategy. Third, AO is combined with environment lighting.

4.3.1 Layered Depth Maps and AO

Recall that a layered depth map can be used to perform intersec-
tion queries in the direction which the layered depth map is oriented
(Section 3.3). This is exactly the kind of query that is needed to
implement the visibility function V . Formally, Equation 4 can be
implemented as

V (x, ωi) =

{
0 trace(x, ωi)returned a position
1 Otherwise

(12)

where we have used the previously mentioned trace function. The
problem is that V (x, ωi) is defined for multiple directions and not
just a single one. Our solution is to construct multiple layered depth
maps each oriented in a different direction. Section 4.3.2 will go
into further details.

4.3.2 Sampling Strategy

The sampling strategy dictates how the directions, ωi, are chosen.
Select strategies are explained in the following paragraphs.

Random One approach is to use the exact same strategy as done in
ray-tracing. I.e., solve the integral using the Monte Carlo estimator
(Equation 8) and therefore choose the sample directions uniformly
at random. Said directions could be generated each frame since our
auxiliary data structure reconstructs all the layered depth maps on
a per-frame basis. The advantage of random sampling is that the
result is free of banding artifacts (though some noise is introduced)
[Pharr and Humphreys 2004]. There are, however, some caveats
to this approach. The set of directions is very likely to be different
from frame to frame (since the directions are generated randomly).
Consequently, the sampling pattern will change each frame. This
results in temporal flickering (flickering noise between frames).

The obvious solution is to instead generate the random directions at
application start (and not before each frame). This approach may
indeed work well for a large number of sample directions. In prac-
tice, however, we would like to limit the number of sample direc-
tions in order to increase performance. This is especially true for
our auxiliary data structure since each sample direction requires the
generation of a layered depth map. Moreover, the directions gener-
ated at application start may not cover the hemisphere sufficiently
(if we are unlucky with the random generation). In that case, all
subsequent frames will be stuck with a poor sample distribution.
The fewer samples that are used, the likelier it is that the sample
distribution will be poor.

Lastly, importance sampling is not applicable due to the nature of
our auxiliary data structure. When using importance sampling in
the context of AO (e.g., Equation 9), the PDF is based on surface
properties (e.g., the normal). As such, it is impossible to construct
the sample directions prior to rasterizing the scene since the surface
properties are unknown at that time.

Quasi-random The aforementioned caveats are well-known
problems in offline rendering. A solution is to use quasi-random
samples instead. That is, samples which are chosen by a combi-
nation of random sampling and deterministic sample distribution.

One such strategy is stratified sampling [Pharr and Humphreys
2004]. Let N be the total amount of samples. First, the sample
domain (e.g., the unit hemisphere), Λ, is divided into subdomains,
Λ1,Λ2, . . . ,Λn. Second, an equal amount of samples, N

n
, are gen-

erated at random in each subdomain, Λi. Since the randomness is
restricted to the subdomains, samples are less likely to group up in
clusters. Thus even with a low number of overall samples, N , an
even distribution of samples can be guaranteed.

Using quasi-random sampling with the Monte Carlo estimator is
known as the quasi-Monte Carlo method [Pharr and Humphreys
2004]. The number of subdomains, n, determines the trade-off be-
tween banding artifacts (due to determinism) and noise (due to ran-
domness).

The above properties make quasi-random sampling a good candi-
date for our purpose. This is regardless of whether the samples are
generated per frame or at application start. Still, the caveats men-
tioned about pure random sampling remain though they are now
controllable via the parameter n.

Deterministic Lastly, is the option to choose sample directions
deterministically. As hinted above, deterministic strategies produce
no noise but suffers from banding artifacts.

In the case of the unit hemisphere, one way to divide the domain is
by equal area. The sample directions are then the centers of each
subdomain. Equal-area subdivision, however, can be achieved us-
ing ring slices (and a spherical cap). With such a subdivision, it is
impossible to choose a proper center for each subdomain (apart from
the cap). Therefore, it is additionally required that each subdomain
must have a small diameter. The latter is defined as the maximum
Euclidean distance between two points in the domain. Combined,
the equal-area and small-diameter requirements restrict the subdi-
vison to well-distributed patches from which representative centers
can be easily chosen.

Such a subdivision has been achieved for the sphere through what
is known as the recursive zonal equal-area partition [Leopardi
2006]. Said algorithm recursively divides the domain into equal-
area small-diameter subdomains starting with the entire sphere. It
returns both the subdomains and their centers (which we interpret as
directions). Please refer to Figure 21 for an example. The complete
algorithm is complex and out of scope of this report.

The subdivision of [Leopardi 2006] is for the sphere. It can, how-
ever, be easily modified to work for the hemisphere defined by the
normal n. The solution is simply to reject directions which are
in the complementary hemisphere. E.g., directions, ω, for which
cos(ω · n) < 0.

An additional modification is required for our use case. Recall that
a layered depth map oriented in direction d can test for intersections
in both the d and−d directions (Section 3.3). As such, only a single
layered depth map is needed for all parallel directions. Therefore,
we further cull the sample directions so that no two directions are
parallel.

The equal-area small-diameter distribution of directions ensures
that the hemisphere is representatively sampled. Analogously, each
direction, ω, can be interpreted as representing its corresponding
subdomain of the hemisphere, Asub. Formally, ω is interpreted as

a differential cone of directions with solid angle dω =
Asub
r2

where
r is the radius of the hemisphere. Thus dω = Asub on the unit
hemisphere. As such, the integral in Equation 5 can be approxi-

32

Figure 21: Visualization of 128 samples generated using the re-
cursive zonal equal-area partition [Leopardi 2006]. Note that half
of the samples in the bottom ring have intentionally been culled
because parallel sample directions exist on the other side of the
sphere.

mated using the midpoint rule

AO(x) ≈ 1

π

N∑
i=0

V (x, ωi) cos θiAsub,i

where Asub,i is the area of the ith subdomain and N is the total
number of subdomains. Since all subdomains have equal area, it
must be that

Asub,i =
AH

N
=

2π

N

whereAH = 2π is the area of the unit hemisphere. Thus the integral
becomes

AO(x) ≈ 2

N

N∑
i=0

V (x, ωi) cos θi (13)

Note that this coincides with Equation 8 where uniform random
sampling was used. Again, we stress that the deterministic equal-
area small-diameter approach introduces banding artifacts.

Alternatively, the deterministic sampling method could have been
prioritized according to the cosine term. In our use case, however,
this is not applicable for the same reasons as earlier noted with im-
portance sampling.

Summary We use the deterministic approach to ensure consis-
tency between frames (temporal coherence). In doing so, we ac-
knowledge that the results will have banding artifacts. The reason-
ing is that the flickering noise of random or even quasi-random sam-
pling strategies is too much of a disturbance. We fear that it might
ruin the user experience. Banding artifacts are also noticeable but a
much minor distraction.

4.3.3 Environment Lighting

So far, AO has been explained as a special case of indirect light-
ing. However, the underlying assumptions made can also be ap-
plied to direct environment lighting. Specifically, Assumption 4 is

true for distant, omnidirectional light such as that of a cloudy sky
environment. In this context, L∗

i (from Equation 3) denotes the av-
erage color of the environment. However, if the environment is
non-uniform (e.g., due to one big bright spot such as the sun), then
Assumption 4 doesn’t hold. Alternatively, one can choose a differ-
ent simplification of Li such as

Li = Lenv(ωi)V (x, ωi)

where Lenv(ωi) is the incoming radiance from the environment in
direction ωi. Note that Lenv(ωi) is assumed to not depend on x.
I.e., the environment is assumed to be so far away that any change
with regard to x will be infinitesimal in comparison. The result is
environment occlusion

EO =
1

π

ˆ
H
Lenv(ωi)V (x, ωi) cos θidωi

which fits into the rendering equation similarly to AO

Lo(x, ωo) = ρd(x)EO(x)

In practice, Lenv(ωi) is implemented via environment mapping.
Furthermore, lookups into the environment map can be dependent
on the result of V to increase performance.

33

Passes Storage

Compute AO
Screen-aligned Quad

Data Bu�er
List nodes and
head indices

SSBO

Figure 22: The passes and storage used to generate AO.

4.4 Implementation

In this section, we will show how our AO method can be imple-
mented in practice. First, the sampling method is implemented.
Second, a practical issue is solved using a normal offset.

4.4.1 AO Sampling

The sampling directions used in Equation 13 are pre-computed us-
ing a Matlab script provided by [Leopardi 2006]. Said script has
been modified according to the discussion in Section 4.3.2. When
the application starts, the directions are loaded.

Solving Equation 13 requires the following steps (Figure 22):

1. Compute AO (screen-aligned quad). Choose a sample di-
rection wi.

(a) Compute trace(x, ωi)wherex is the position inWC cor-
responding to the current pixel.

(b) V is calculated using Equation 12.

(c) Weigh V by the cosine term using the normal from the
G-buffer and accumulate the result.

Note that the accumulated result must be weighed by 2
N
to get the

final result. We will go into further detail with each sub-step in the
following paragraphs.

(a) We already gave an overview of the trace(x, ωi) computation
in Section 3.3. Now, we will provide an implementation. First
(Find Map), the layered depth map is corresponding to ωi found.
This is trivial, since there is a direct mapping between the two. Sec-
ond (Find Pixel), x is projected into the view of the layered depth
map to find the corresponding pixel, p

1 // Find the pixel's position
2 ivec2 sc_position;
3 if (project_wc_to_sc(wc_position, ldm_view,

sc_position)
4 // Assume clear outside of LDM bounds
5 return 1.0;

Note that the project_wc_to_sc function from Listing 4 has been
reused. Also, if the position is clipped by the projection, then xmust
have been outside the view used to generate the layered depth map.
Such positions are assumed to belong to the environment.

Third (Find Depth Value), the list is traversed. sc_position can
be used to index into the data buffer of the layered depth map

1 // Get the head node
2 uint32_t head_index = data_offset + sc_position.x +

sc_position.y * ldm_view.dimensions.x;
3 uint32_t current = data[head_index].next;

to find the corresponding head node of the singly linked list (Lp

sequence). As explained earlier, the data_offset is due to all the
layered depth maps being stored in the same buffer. Traversing said
list is is identical to the code used for the point cloud visualization
(Section 3.4.5)

1 // Traverse the list
2 while (0 != current && list_length++ <

max_list_length) {
3 wc_sample_position = /* Same as before */
4

5 // Find list node corresponding to x
6

7 // Next node
8 current = data[current].next;
9 }

The same goes for the reconstruction of the sample position,
wc_sample_position, from the stored depth value . The new
part is to find the list node which corresponds to x (wc_position
). Said list node must be the one for which wc_position ==
wc_sample_position. In practice, however, such a comparison
will always fail due to finite precision in computing. Instead, we
find the list node for which sample_distance

1 float sample_distance = distance(wc_sample_position,
wc_position);

is minimum. This is done using a simple if statement

1 // Find list node corresponding to x
2 if (sample_distance < min_distance) {
3 // Store data about the previous node.
4 // Just the distance is needed for AO.
5 previous_distance = min_distance;
6

7 min_distance = sample_distance;
8 // Diverging
9 } else break;

where min_distance is initially the largest floating point value
(FLOAT_MAX). Because the singly linked list is sorted, the loop can
be broken as soon as the sample_distance starts to increase (di-
verges). After the loop, the current node will correspond to x.

Fourth (Compute Intersection), the previous node (corresponding
to zx−1) has already been found. In the context of AO, only the
distance to the previous node, previous_distance, is needed. For
other methods, any additional data about the previous node can also
be saved if need be.

(b) Most of the work is already done at this point. V is imple-
mented as follows

1 float visibility(in float occluder_distance)
2 { return (FLOAT_MAX == occluder_distance) ? 1.0 :

0.0; }

and called like this

1 float V = visibility(previous_distance);

Alternatively, an attenuated version of V can be used

1 const float d_max = 100.0;
2 const float falloff_exponent = 2.0;
3 float attenuated_visibility(in float

occluder_distance)

34

1 float trace_ambient_occlusion(
2 in vec3 wc_position,
3 in vec3 wc_normal)
4 {
5 float result = 0.0;
6 for (int i = 0; i < N; ++i)
7 result += trace_ambient_occlusion(
8 i,
9 wc_position,
10 wc_normal);
11 return 2.0 / float(N) * result;
12 }

Listing 6: GLSL summation of AO contributions.

4 { return pow(min(occluder_distance / d_max, 1.0),
falloff_exponent); }

to implement ambient obscurance.

(c) Likewise, the cosine term is easily evaluated

1 float cos_theta = dot(ldm_view.forward, wc_normal);

Lastly, the contribution is accumulated

1 float result += V * cos_theta

Source Code The complete GLSL code for a fragment shader
implementing the above steps can be found in Listing 5. The last
step is to sum all the contributions together as shown in Listing 6.
Note that in the complete code, the distance to the next link node,
next_distance, is also computed. The AO contribution is only
computed for one sample. Namely the one which is in the unit hemi-
sphere defined by wc_normal.

4.4.2 Normal Offset

In practice, the above implementation produces artifacts for thin sur-
faces. The problem is that the algorithm sometimes mistakes the
first occluder (corresponding to zx−1) for x itself at oblique angles.
This is an artifact of the low resolution of the layered depth map.

The issue can be resolved by introducing a normal offset. That is,
by virtually offsetting the positions along the normal and thereby
thickening the surfaces. The normal offset is applied as follows

1 // Normal offset (virtual thickening)
2 float cos_alpha = clamp(dot(wc_normal, ldm_view.

forward), 0.0, 1.0);
3 float normal_offset = sqrt(1.0 - cos_alpha *

cos_alpha); // sin(acos(cos_alpha));
4 const float constant_factor = 10.0;
5 wc_position += wc_normal * normal_offset *

constant_factor;

Note that the offset is weighed by sin(acos(ωi · n)) where ωi is the
direction of the layered depth map and n is the surface normal. The
more the n deviates from ωi the greater the offset. This is inspired
by a similar technique used to reduce artifacts in shadow mapping
[Holbert 2011].

4.4.3 HBAO

The source code to our HBAO implementation can be found in
the appendix. The implementation is based on our previous work

[Aalund and Bærentzen 2013]. Usually, a post-processing blur is
used to remove noise artifacts in screen-space methods [Loos and
Sloan 2010; McGuire et al. 2011]. The HBAO does not need to be
blurred if enough samples are taken. As such, HBAO can be im-
plemented in a single pass over a screen-aligned quad. Sampling
is done from an attached depth map which is rendered during G-
buffering.

35

1 float trace_ambient_occlusion(in int ldm_id, in vec3 wc_position, in vec3 wc_normal) {
2 // Get LDM data
3 view_type ldm_view = views[ldm_id];
4 uint32_t data_offset = data_offsets[ldm_id];
5

6 /* Normal offset */
7

8 // Find the pixel's position
9 ivec2 sc_position;
10 vec3 ndc_position;
11 if (project_wc_to_sc(wc_position, ldm_view, sc_position, ndc_position)
12 // Assume clear outside of LDM bounds
13 return 1.0;
14

15 // Get the head node
16 uint32_t head_index = data_offset + sc_position.x + sc_position.y * ldm_view.dimensions.x;
17 uint32_t current = data[head_index].next;
18

19 // Initialize search variables
20 float min_distance = FLOAT_MAX;
21 float previous_distance = min_distance;
22 float next_distance = min_distance;
23 bool get_next = false;
24

25 // Traverse the singly linked list
26 const int max_list_length = 2048;
27 int list_length = 0;
28 while (0 != current && list_length++ < max_list_length) {
29 float depth = data[current].depth;
30

31 // Reconstruct the position in world coordinates
32 vec3 direction = (
33 ldm_view.forward * depth +
34 ldm_view.right * ldm_view.horizontal_scale * ndc_position.x +
35 ldm_view.up * ldm_view.vertical_scale * ndc_position.y);
36 vec3 wc_sample_position = ldm_view.eye + direction;
37

38 float sample_distance = distance(wc_sample_position, wc_position);
39

40 // Keep track of the next node in the list
41 if (get_next) {
42 get_next = false;
43 next_distance = sample_distance;
44 }
45

46 // Keep track of the previous node in the list
47 if (sample_distance < min_distance) {
48 previous_distance = min_distance;
49 min_distance = sample_distance;
50 get_next = true;
51 } else break;
52

53 current = data[current].next;
54 }
55 if (get_next)
56 next_distance = max_distance;
57

58 float cos_theta = dot(ldm_view.forward, wc_normal);
59

60 return (cos_theta > 0.0)
61 ? visibility(next_distance) * cos_theta
62 : visibility(previous_distance) * -cos_theta;
63 }

Listing 5: GLSL computation of AO using layered depth maps.

36

Figure 23: Path tracing. A path is traced from the camera to the
light source. At each surface intersection, a new random direction
is randomly sampled.

5 Indirect Lighting

In this section, we present a global illumination method for single-
bounce indirect diffuse lighting using our auxiliary data structure
of layered depth maps. First, a theoretical introduction to indirect
lighting is given. Second, the previous work section presents an
overview real-time indirect lighting methods. Third, we present our
indirect lightingmethod based on photon differentials and using lay-
ered depth maps. Fourth, implementation details are given.

5.1 Background

This section describes various methods to produce indirect light-
ing. All methods are derived from the rendering equation. First,
we describe path tracing and VPLs. These methods will be used in
our comparison. Then, we go into details with photon mapping and
photon differentials. The latter will be the basis of our approach.

5.1.1 Path Tracing

Path tracing was presented together with the rendering equation
(Equation 1) as a general-purpose method to solve the latter [Kajiya
1986]. In Section 4.1, the rendering equation was used to derive a
simplified version of indirect lighting known as AO. This was done
under Assumptions 1–4. Such assumptions are a useful to simplify
the integral but not strictly necessary. Using path tracing, the inte-
gral can be computed in its unsimplified form. That is, path tracing
is general global illumination method for both direct and indirect
light. The idea is to trace a path from the eye (E) to a light source
(L) in the scene. Said path can undergo any number of diffuse (D)
or specular (S) surface interactions. That is, any L(D|S)∗E path
in light transport notation [Heckbert 1990].

First, a ray is traced from the eye to compute the first intersection
point. A new ray is then traced from the intersection point in a
direction sampled on the unit sphere, S. In practice, the Monte
Carlo method is used to sample directions with a PDF based on
the surface’s BSDF (importance sampling). New rays are traced
recursively until either: The ray hits a light, Russian roulette termi-
nates the ray, or a max tracing depth has been reached [Pharr and
Humphreys 2004]. Russian roulette is used to probabilistically stop
the tracing without introducing bias. All traced rays combined form

Figure 24: Virtual point light. First, a light path is traced (yel-
low arrow). At each vertex, a VPL is generated (small light bulbs)
which represents the light path thus far. Second, a camera path
is traced (black arrow) which samples all the point lights for each
vertex (dashed arrows). Occluded lights do not contribute (black
dashed arrows).

the path (Figure 23).

With all the ray-tracing in the algorithm, it can be hard to distinguish
path tracing from conventional Whitted ray-tracing [Whitted 1980].
The key difference is that Whitted ray-tracing forms a tree of rays
whereas path tracing forms a single path of rays [Kajiya 1986].

Bidirectional Path Tracing Obscured light sources pose a prob-
lem in conventional path tracing. If the light is hard to reach from
the camera, then many paths will fail to find it and thus not con-
tribute to the final image. By also constructing paths from the light
sources, otherwise obscured light paths can easily be found. This is
known as bidirectional path tracing [Pharr and Humphreys 2004].
Paths from the camera and light sources are connected by visibility
rays. This method is better at handling obscured light sources. It
has similar performance characteristics to path tracing.

Summary The key advantage to path tracing is that it is an unbi-
asedmethod. As such, it is known to converge to the correct solution
if given enough time. One of the disadvantages is that it may take a
substantial amount of time before the solution converges. Too few
paths results in under-sampling and, consequently, noise. More-
over, the algorithm uses ray-tracing to construct the paths and as
such doesn’t directly apply to a rasterization-based pipeline. With
layered depth maps, however, this limitation can be overcome. See
Section 5.2 for a path tracing-rasterization hybrid based on layered
depth maps.

5.1.2 Virtual Point Lights

Correctness can be traded for performance. This is the key to meth-
ods which use approximations and estimates to solve the rendering
equation. Such methods are biased since they will never converge
to the true solution in practice. However, a biased solution can be
visually convincing nonetheless.

One such method is instant radiosity [Keller 1997]11. First, the ren-

11Instant radiosity is based on the radiosity method [Goral et al. 1984].

37

dering equationmust be converted into an integral over surface area.
The relation between differential solid angle and differential area is

dω =
cos θ′

r2
dA

where r is the distance between x and dA. θ′ is the angle between
the surface normal at dA andω [Pharr and Humphreys 2004]. Using
the above relation, the rendering equation can be written as

Lo(x, ωo) = Le(x, ωi)+ˆ
A

fr(x, ωo, ωi)Li(x, ωi)V (x, ωi) cos θ
cos θ′

r2
dA(y)

where A is the surface area of the entire scene, y is a point repre-
senting dA, and ωi is the direction from x to y. The visibility term
is the same as used in AO. A small simplification is often used

Lo(x, ωo) = Le(x, ωi)+ˆ
A

fr(x, ωo, ωi)Li(x, ωi)G(x, y)dA(y) (14)

where the geometry term

G(x, y) = V (x, ωi)
cos θ cos θ′

r2

accounts for distance attenuation and projection between the sur-
faces. Now, the basic idea in instant radiosity is to sample the in-
coming radiance, Li, from so-called virtual point light (VPLs). The
method uses two passes:

1. VPL Generation. Light paths are constructed from the light
sources. Each time a vertex is added to the light path, a VPL is
stored. Said VPL represents the light path up until that point.

2. Rendering. Rendering is done in two parts. Direct lighting
is sampled using another method (e.g., Whitted ray-tracing).
Indirect lighting is computed by connecting the camera paths
with the light paths through the VPLs.

Note that the light path is limited to diffuse reflections, LD+, be-
cause of Assumption 3. Each pass will be explained inmore detail in
the following paragraphs. Please refer to Figure 24 for an overview.

Generation Each VPL stores a representation, α, of the corre-
sponding light path. The initial VPL’s α is based on the radiance
emitted from the light (Le). Each subsequent VPL’s α is based on
the incoming radiance from the previous vertex in the light path.
The radiance is scaled between the vertices to account for projec-
tion (cosine term) and and the BRDF at the current vertex. Specif-
ically, α is the product of Le with the the cosine term (for each
vertex) and the BRDF (for each vertex beyond the first). Addition-
ally, each VPL stores the properties of there surface where the VPL
was generated (the position, normal, and bidirectional reflectance
distribution function).

In theory, α is just an intermediary variable used to store the light
path’s throughput before the camera path and light path can be con-
nected. In the point light analogy, α can be interpreted as radiant
flux [W]. In practice, α is usually multiplied with the BRDF of the
last vertex in the light path (as an optimization under Assumption
3). As such, α stores radiant intensity

[
Wsr−1] in the point light

analogy [Dachsbacher et al. 2014].

The latter is a finite element approach to solving the rendering equation.

Figure 25: Photon mapping. First, photons are traced from the
light source into the scene. Second, a camera path is traced. At
each intersection, the nearby photons are sampled.

Rendering First, a camera path, DS∗E, is created (e.g., using
Whitted ray-tracing). Then, the camera path is connected with the
various light paths through the VPLs. This forms LD+DS∗E
paths. Consequently, the VPLs only contribute with indirect light-
ing (since an L(D|S)E path is impossible). Therefore, direct light-
ing must be computed separately (e.g., using Whitted ray-tracing)
and added to the result.

The camera path is connected with a light path by sampling the VPL
that represents the light path. The VPL is sampled using

Li(VPL) = fVPLαVPL (15)

where the fVPL term is the BRDF evaluated at xVPL. As earlier
mentioned, said term is multiplied directly onto the stored αVPL
in practice. Thus fVPL is normally left out of Equation 15. All
indirect lighting can be accumulated by connecting all light paths
to the camera path. That is, as a sum of each VPL’s contribution.
Using this together with Equation 14 gives that

Lo(x, ωo, ωI) =
1

M

N∑
i

fr(x, ωo, ωi)Li(VPLi)G(x, y) (16)

where VPLi is the i’th virtual point light out of N total. M is the
number of generated light paths. Theoretically, each VPL’s contri-
bution should be weighted by the surface area represented by the
corresponding light path vertex. This detail is often left out in prac-
tice. Instead, a global scale parameter is used.

Instant radiosity, as described above, is actually unbiased. How-
ever, sampling the same light paths leads to banding artifacts [Pharr
and Humphreys 2004]. Furthermore, the G term is often bounded
in practice to reduce so-called light splotches (due to singularities
when r ≈ 0). This bounding introduces bias in the algorithm
[Dachsbacher et al. 2014].

Summary Instant radiosity is similar to bidirectional path tracing
but has performance advantages. Specifically, that all light paths
can be reused for each camera path. Many later methods are based
on VPLs after the latter were introduced in instant radiosity [Dachs-
bacher et al. 2014]. Recently, VPL has also been used in real-time
methods (Section 5.2). The real-time VPLmethods have many sim-
ilarities with our layered depth map approach which we will discuss
later.

38

5.1.3 Photon Mapping

Photon mapping [Jensen and Christensen 1995], like instant radios-
ity, is a biased rendering method. First, the rendering equation must
be rewritten in terms of irradiance

[
Wm−2]. irradiance is differ-

ential radiant flux, dΦ, per differential area, dA. It’s denoted by

E(x, ω) =
dΦ(x, ω)

dA

Recall that radiance can be expressed in terms of irradiance

L(x, ω) =
d2Φ(x, ω)
dAdω cos θ

=
dE(x, ω)

dω cos θ
(17)

where dω is the differential solid angle and θ is the angle between
ω and the surface normal at x. Using Equation 17, the rendering
equation can be written as an integral over irradiance

Lo(x, ωo) = Le(x, ωo) +

ˆ
S
fs(x, ωo, ωi)dE(x, ωi) (18)

The key to photon mapping is to estimate the dE(x, ωi) term. This
is done in two passes:

1. Photon Tracing. N photons carrying radiant flux are emitted
from the light source and traced into the scene. Upon absorp-
tion, the photons are stored in a photon map.

2. irradiance Estimation. The photon map is queried in a local
area around the point in question. The n nearest photons are
used for the irradiance estimate.

Please refer to Figure 25 for an overview. The following paragraphs
will provide more details about each step.

Photon Tracing Each photon, p, carries radiant flux

Φp =
Φlight
ne

where Φlight is the radiant flux of the light source and ne is the
total number of emitted photons. The photons are traced from the
light source into the scene just like rays carrying radiance [Jarosz
et al. 2008]12. When a photon reaches a diffuse surface, the pho-
ton is either absorbed or reflected based on the outcome of Russian
roulette. Upon absorption, the photon is stored in a photon map (a
hierarchical data structure such as a k-d tree). Both the photon’s
radiant flux (Φp), position (xp), and incoming direction (ωp) are
stored. Usually, two photon maps are used: A caustic photon map
and a global photon map [Jensen and Christensen 1995]. The maps
store LS+D and L(S|D)∗D photons, respectively. This division
is done so that caustic photons (reflected or refracted photons) can
be treated specially during rendering.

irradiance Estimation Recall that irradiance is radiant flux over
area. The radiant flux is estimated, Eest(x), as the N nearest pho-
tons to x. The original method is to search in a sphere centered at x
that expands until the N nearest photons have been found [Jensen
and Christensen 1995]. Let r(x) be the final radius of the sphere.
The irradiance estimate is then

Eest(x) =
Φ

N nearest photons
Aprojected sphere

=

∑N
p=0 Φp

πr(x)2
(19)

12Refraction is an exception. Tracing of radiance must be scaled by the

squared ratio of the medias’ index of refraction,
(

η1
η2

)2
, whereas radiant

flux should not be scaled [Veach et al. 1996].

where Φp is the radiant flux of the pth nearest photon (out of
N). The projected sphere is approximated by a circle so that
Aprojected sphere = πr(x)2. Note how the estimate adapts based
on the number of nearby photons. That is, if there are few photons
near x then r(x) will increase accordingly to cover a larger radius
until the N nearest photons have been found. Likewise, if there
are many photons near x then the N nearest photons will quickly
be found and r(x) will be small. Note that Equation 19 introduces
bias since the radiant flux at x is averaged over multiple samples
(which are not necessarily located in the immediate vicinity of x).
The parameter N can be used to control the bias. Large N leads
to systematic artifacts (blurred estimates) whereas low N leads to
variance (noisy estimates).

This is an application of a broader method known as density es-
timation. The idea is to estimate an unknown function (E) based
on data samples. The above method is a so-called adaptive den-
sity estimation method since the bandwidth, r(x), is parametrized.
Another well-known technique is the so-called kernel density esti-
mation [Pharr and Humphreys 2004]. The sum in Equation 19 is
generalized to associate a functional weight, w, to each sample

w(x) = πK

(
∥x− xp∥

r(x)

)
(20)

where K(l) is the kernel function and xp is the position of the pth
photon. This way, photons closer to the point of interest (x) will
weigh more in the sum. K is typically a smooth (continuous deriva-
tives) function such that the density estimate itself will be smooth.
In the case of photon mapping, the irradiance estimate is over a cir-
cle. A fitting K is usually normalized such that it integrates to 1

π
(the inverse area of the unit circle). Using the kernel method leads
to the following irradiance estimate

Eest(x) =
1

r(x)2

N∑
p=0

ΦpK

(
∥x− xp∥

r(x)

)
(21)

Note that the π has canceled out. Moreover, Equation 19 is a spe-
cial case of Equation 21 when K = 1

π
. Another choice of K is

Silverman’s second-order kernel

K(l) =

{
π
3

(
1− l2

)2
l < 1

0 Otherwise
(22)

which has proven useful in practice [Frisvad et al. 2014].

Rendering The irradiance estimate (Equation 21) can be used to
approximate the integral in Equation 18. This becomes the radiance
estimate

Lo(x, ωo) = Le(x, ωo)+

1

r(x)2

N∑
p=0

fs(x, ωo, ωp)ΦpK

(
∥x− xp∥

r(x)

)
(23)

Note that xp, ωp, and Φp are all photon properties. Thus the inci-
dent radiance can be computed entirely from the glsirr estimate of
nearby photons. In principle, this presents a unified (direct and indi-
rect) lighting solution. In practice, however, computing all lighting
using photon mapping is expensive. Instead, the incoming radiance
is split into three parts: Direct (Li,l), indirect specular (Li,c), and
indirect diffuse (Li,d) [Jarosz et al. 2008]. Li,l is traced using a
conventional method (e.g., Whitted ray-tracing). Li,c is computed
using the sum in Equation 23 restricted to the caustic photon map.
This preserves the high frequency details of the caustics. Li,d is

39

du

d
x

Dud

Dux

Figure 26: Ray differential. The black ray is the main ray which
we are currently tracing. The blue ray is the offset ray (which is not
actually traced). The solid and dashed red vectors are the positional
and directional ray differentials, respectively.

computed using the sum in Equation 23 with the global photon map.
Indirect diffuse lighting is low frequency so a blurred glsirr estimate
is hardly noticed. The outgoing radiance is then the sum of each
term

Lo = Le + Li,l + Li,c + Li,d

A single step of Monte Carlo integration can be used to improve
the result of Li,d even further. This is called final gathering [Pharr
and Humphreys 2004]. In this approach, the incoming diffuse ra-
diance, Li,d, is sampled using rays in random directions over the
hemisphere. However, said rays use Equation 23 to sample Li,d at
their first intersection. Thus the recursion stops immediately.

Summary Like VPLs, photon mapping has strong parallels to
bidirectional path tracing. Similarly, it provides a unified approach
to global illumination. The key difference is that photon mapping
also handles specular reflections; a topic which is still actively re-
searched for VPLs [Dachsbacher et al. 2014].

5.1.4 Photon Differentials

The main source of bias in photon mapping is the irradiance esti-
mate. Furthermore, said estimate relies on the empirical parameter,
N . Photon differentials is a method which improves on the irradi-
ance estimate [Schjøth et al. 2007]. The classical tracing of a photon
ray is augmented with a spread. That is, not only is the photon ray
traced but also the differential spread of said ray. The differential
spread forms a beam which is called the photon differential. Like
the photon ray itself, the differential spread undergoes reflection and
refraction. These interactions modifies the size of the photon differ-
ential (the footprint). In the end, the footprint is a measure of the
photon differential’s area. This can be used directly to compute an
irradiance estimate.

Ray Differentials The theory behind photon differentials builds
on ray differentials [Igehy 1999]. Though ray differentials were
invented to improve texture filtering, much of the underlying theory
remains the same. As such, we devote the next couple of paragraphs
to the study of ray differentials.

Camera rays are typically computed using an image plane. Let

r = (x, d) be a ray where x is the ray’s position and d is it’s normal-
ized direction. A camera ray corresponds to a set of uv-coordinates
on the image plane13. The camera itself can be described by a pro-
jection model and a viewmodel. The latter is generated from an eye
point and a set of viewing directions: Forward, right, and up. The
camera ray’s initial position is simply the camera’s eye point

x(u, v) = Eye

The camera ray’s unnormalized direction, d̂, is initially

d̂(u, v) = tForward+ uRight+ vUp

where u and v are in NDC and t is the distance to the ray’s first
intersection. It follows that the camera ray’s normalized direction
is simply

d(u, v) =
d̂∥∥∥d̂∥∥∥ =

d̂(
d̂ · d̂

) 1
2

Assume that two neighbouring camera rays were traced just slightly
offset from the original ray’s uv-coordinates

r∆u = r(u+∆u, v) = r(x(u+∆u, v), d(u+∆u, v))

r∆v = r(u, v +∆v) = r(x(u, v +∆v), d(u, v +∆v))

for some small ∆u and ∆v. Together, the neighbouring rays form
a ray beam. The positional difference between these rays is the
beam’s footprint. In turn, the footprint is a measure of the surface
area represented by the ’pixel’ corresponding to the ray beam. How-
ever, tracing two extra rays per pixel is inefficient.

The idea of [Igehy 1999] is to let ∆u,∆v → 0 and trace so-called
ray differentials. As such, what is actually traced is the differential
offsets themselves

Dur = (Dux,Dud)

Dvr = (Dvx,Dvd)

whereD is the differential operator (Figure 26). In practice, the dif-
ference between the neighbouring rays is calculated using the first-
order forward difference method

r(u+∆u, v)− r(u, v) ≈ ∆u ·Dur

r(u, v +∆v)− r(u, v) ≈ ∆v ·Dvr

for some ∆u and ∆v. In turn, this can be used to calculate the ray
differentials footprint (we defer that to later). Note that only a sin-
gle ray, r, is traced. The derivatives, Dur and Dvr, are updated
accordingly using derivative tracing functions. The latter are the
derivatives of the normal tracing functions. For instance, the ray
differentials initial offsets,Dux andDud, are found by simply cal-
culating the derivatives of the initial x and d functions

Dux = DuEye = 0

Dud = Du

 d̂(
d̂ · d̂

) 1
2

 =

(
d̂ · d̂

)
Right−

(
d̂ · Right

)
d̂(

d̂ · d̂
) 3

2

where 0 is the zero vector. Analogously, an expression in the v-
direction can be found.

Ray propagation (transferring) is another simple operation14. The
purpose is to transfer a ray, r = (x, d) from x in direction d to

13We use uv in NDC to avoid confusion with xy in WC.
14Assuming that it happens in a homogenous medium.

40

x∗. Let t be the distance to the ray’s first intersection. Then the
transferred ray, r∗ = (x∗, d∗), is

x∗ = x+ td

d∗ = d

This is elemental ray-tracing. Note that the direction doesn’t
change; reflection and refraction are dealt with in another step. The
ray differential equivalents are more involved. Taking the deriva-
tive of the above leads to

Dux
∗ = (Dux+ tDud) + (Dut) d

Dud
∗ = d

To findDut, an expression for t is first needed. LetN be the surface
normal at x∗. Assume that the surface at x∗ is a plane tangent toN .
Furthermore, assume that x is given in a coordinate system centered
at x∗. Using similar triangles, t can be calculated as

t = −x ·N
d ·N

Now the derivative of t can be readily found

Dut = − (Dux+ tDud) ·N
d ·N

using that DuN = N (due to the tangent plane assumption). Note
that the coordinate system assumption has no impact on the deriva-
tive since no absolute positions are involved. Likewise, it can be
shown that the tangent plane assumption isn’t necessary [Igehy
1999]. Thus the above equation for Dut holds in general. Anal-
ogously, an expression for v can be derived.

Similar derivations can be used to find the derivative functions for
reflection and refraction. These functions are not needed in our case
so we omit them here. Please refer to [Igehy 1999] for a full treat-
ment on ray differentials.

Photon Connection Ray differentials are directly connected to
photon differentials through emission from a point light source
[Schjøth et al. 2007]. A spot light, for instance, can be modelled
as a pinhole camera. As such, each pixel on the image plane cor-
responds to a photon emission. The differential of said photon can
then be traced directly as one would trace ray differentials. In this
context, the photon’s position, xp, becomes the ray position and
similarly, ωp = −d.

Thus it is now possible to trace radiant flux simultaneously with a
measure of the photon’s footprint. The photon’s positional differ-
ential is the key. Said differential spans a parallelogram with area

Ar = |Duxp ×Dvxp|
where Ar is the area of the ray footprint. The area of the photon
footprint, Ap, is the max-area ellipse inscribed in the parallelogram
[Frisvad 2012]

Ap =
π

4
Ar =

π

4
|Duxp ×Dvxp|

Using this, the irradiance estimate for a single photon, Ep, can be
found directly as

Ep =
Φp

Ap
(24)

Like in photon mapping, the irradiance can be directly used to esti-
mate the reflected radiance in Equation 18. The outgoing radiance
becomes

Lo(x, ωo) = Le(x, ωo) +
N∑

p=0

fs(x, ωo, ωp)Ep (25)

where the sum is over the N photons whose footprint overlaps x.

Kernel Method Like in photon mapping, a kernel function, K,
can be used to weigh the photon’s contribution based on it’s dis-
tance to x [Schjøth et al. 2007; Frisvad 2012]. However, simply
using ∥x− xp∥ directly is naive since it does not take the photon’s
(possibly anisotropic) footprint into consideration. The problem is
to find a matrix,Mp, mapping fromWC into filter coordinates (FC)
the latter being the coordinate space spanned by the photon differ-
ential (an ellipsoid). Fortunately, mapping the other way around is
straightforward. It can be expressed in terms of a matrix, Bp, using
the positional differentials and the surface normal

Bp =

 1
2
Duxp

1
2
Dvxp

np

where np is the surface normal at xp. Half the length of the po-
sitional differential vectors are used to center around xp. Thus
Mp = B−1

p . Inverting a 3 × 3 matrix can be done with a few
cross products [Collomb 2007] so that

Mp =
1(

1
2
Duxp

)
·
((

1
2
Dvxp

)
× np

)
 (

1
2
Dvxp

)
× np

np ×
(
1
2
Duxp

)(
1
2
Duxp

)
×
(
1
2
Dvxp

)

=
2

Duxp · (Dvxp × np)

Dvxp × np

np ×Duxp

anp

 (26)

where a should in principle be 1
2
. However, a can instead be inter-

preted as a parameter which controls topological bias due to differ-
ences in normal orientation. Alternatively, the last row, anp, can
be omitted for added performance [Frisvad et al. 2014].

Equation 25 is then modified to include kernel weighing

Lo(x, ωo) = Le(x, ωo)+

N∑
p=0

fs(x, ωo, ωp)EpπK(∥Mp(x− xp)∥) (27)

The kernel function, K, can be any of the previously-mentioned
functions. The sum is still over the photons whose footprint overlap
with x.

Scaling Note that the size of the photon footprint directly controls
the bandwidth of the radiance estimate. A scaling parameter, s, is
introduced which globally scales every photon differential. This
way, s can be used to control the bandwidth of the radiance estimate
[Frisvad et al. 2014]. As such, large s increases the bias (blurring the
result) whereas small s reduces bias but introduces variance (noise
in the result). Practically, s is used as an empiric parameter to scale
the photon footprints so that the latter cover the whole scene. Note
that energy is conserved since the footprint directly corresponds to
the area in the irradiance estimate so that the photon’s radiant flux
is spread out accordingly.

Splatting Conventionally, the position, x, would be used to in-
dex into a map of photon differentials to find the overlapping foot-
prints. The sum in Equation 27 can then be computed directly. This
is the standard ray-tracing approach (pixel→photon differentials).
Another approach is to splat the photon differential directly onto
the image plane (photon differential→pixels) [Frisvad et al. 2014].
This has the added benefit that no photon map needs to be stored
and thus no costly lookups into said map.

With a rasterization-based pipeline, primitive→pixels is the natural
order. Therefore splatting is an ideal approach in our use case. We
will go into further details when we design our method.

41

5.2 Previous Work

This section describes how the indirect lighting methods mentioned
in Section 5.1 can be implemented. The discussion is focused on
approaches which are either based layered depth maps or relevant
in our comparison. Still, we will also mention other methods to es-
tablish historical context. We go into further details with methods
which are also real-time and used with rasterization. In a later sec-
tion, we will compare our indirect lighting approach to the previous
work described in this section.

5.2.1 Reflective Shadow Maps

A conventional shadow map is a depth map generated from the
light’s view. A reflective shadow map augments the shadow map
by also storing radiant flux, surface normal, and surface position in
WC [Dachsbacher and Stamminger 2005]. As such, each pixel in
the reflective shadow map is a VPL representing an LD path. Re-
flected radiance from the camera’s view is then integrated in screen-
space. That is, nearby pixels (nearby VPLs) are sampled in a frag-
ment shader and the result is accumulated.

The problem with this approach is that the visibility term, V , is not
evaluated. This is for performance reasons since creating a shadow
map for each pixel in the reflective shadow map is impractical. In-
stead, it is proposed to use AO to compensate for the missing shad-
owing [Dachsbacher and Stamminger 2005]. Still, light leaks can
occur between surfaces that are actually mutually occluded.

Moreover, reflective shadow maps are limited to a single bounce of
light. This is a limitation of using a rasterization-based approach
sinceDE paths are rendered. As such, only an LDDE path can be
formed using reflective shadow maps.

5.2.2 Imperfect Shadow Maps

As previously mentioned, imperfect shadow maps are coarse ap-
proximations of shadow maps [Ritschel et al. 2008]. As such,
imperfect shadow maps can be generated much faster. Imperfect
shadowmaps can be combinedwith reflective shadowmaps to com-
pute the V term of each VPL. This removes the light leak problem
of reflective shadow maps. Note that imperfect shadow maps can
also be combined with any other VPL-based approach. It is just
natural to consider reflective shadow maps since this approach also
works in a rasterization-based pipeline.

An imperfect shadow map is generated by sampling a point on each
primitive (instead of the full primitive). Said point is then rasterized
as a small screen-aligned quad. This is indeed a coarse approxima-
tion but it works well in practice. Furthermore, a so-called push-pull
approach can be used to fill in gaps between neighbouring points
[Ritschel et al. 2008]. A single rasterization pass can generate mul-
tiple imperfect shadowmaps simultaneously by splitting the incom-
ing points equally (and randomly) between the imperfect shadow
maps. As such, each imperfect shadow map will only contain in-
formation about a small subset of the scene. Using the push-pull
method, however, holes in this subset can be coarsely filled.

Imperfect reflective shadow maps [Ritschel et al. 2008] are the im-
perfect shadow map analogues to reflective shadow maps. By aug-
menting each of the imperfect shadow maps with light information,
multiple light bounces of indirect light can be computed. Of course,
this adds additional complexity to themethod and thus degrades per-
formance.

Being imperfect, the V term is sometimes not approximated cor-
rectly. Consequently, light leaks may still occur. Increasing the

resolution of each reflective shadow map can improve the approxi-
mation at the cost of performance. The optimal resolution must be
found empirically.

5.2.3 Parallel Global Ray-bundles

A global ray-bundle is a set of parallel rays. Along each ray, the
scene intersections are recorded. Hopefully, this should sound fa-
miliar as a layered depth map can be interpreted as a set of rays
intersection the scene (Section 3.3). Global ray bundles can be used
in a combined Monte Carlo and finite element method to compute
indirect lighting [Sbert and Sàndez 1996; Hermes et al. 2010].

The underlying idea is that two consecutive depth values in an Lp

sequence form a DD path (when the corresponding surfaces are
connected through open space). As such, the layered depth map
can be used to transfer radiance in both directions of the DD path.
This is done for all suchDD paths in the layered depth map. More-
over, the process is repeated for multiple layered depth maps each
oriented in a different direction sampled uniformly at random. This
is similar to path tracing but with coherent rays and always terminat-
ing after the first bounce. The outgoing radiance values are retrieved
from a texture atlas, TAo, which has an entry for each surface point.
Likewise, the incoming radiance is stored in an equivalent texture
atlas, TAi. After all radiance transfers, the two atlases, TAo and
TAi, are swapped and another round of radiance transfer is initiated.
For each round, another bounce of indirect lighting is computed15.
Thus the method can compute an arbitrary amount of light bounces.

The algorithm is specifically interesting since the authors propose
to use a k-buffer to generate the layered depth maps [Hermes et al.
2010]. They do not claim it to be real-time, however. Still, this
approach was an inspiration for other real-time global illumination
methods such as our own. Section 5.2.4 describes another similar
method.

5.2.4 VPL-based Hybrid

A hybrid VPL and path tracing approach can be implemented us-
ing layered depth maps [Tokuyoshi and Ogaki 2012b]. The idea
is to combine the two approaches into a single bidirectional algo-
rithm. To do so, a reflective shadow map is first used to generate
the VPLs along with a regular shadow map for each VPL. As ex-
plained earlier, this forms LD paths. Then, global ray-bundles are
generated using layered depth maps16. Recall that two consecutive
depth values in a Lp sequence form a DD path. Lastly, DE paths
are rendered from the camera into a G-buffer.

Any combination of the above-mentioned paths can be connected.
E.g., an LDDDE path by tracing from the eye to the first sur-
face (using the G-buffer), then reflecting towards another surface
(using a layered depth maps), and lastly towards a VPL (using the
corresponding shadow map for visibility). This results in a two-
bounce global illumination method. Likewise, single-bounce paths,
LDDE, can also be found by omitting either theDD step or sam-
pling the light source directly (and not the VPL). Furthermore, addi-
tional bounces can be added by tracing layered depth maps for more
DD paths. That is, LD∗E paths are possible though at the cost of
performance for each additional bounce.

This method is specifically worth mentioning, since it is suggested
to use PPSLLs to implement the layered depth maps [Tokuyoshi
and Ogaki 2012b]. Moreover, because the layered depth maps is

15This is similar to the finite element radiosity method [Goral et al.
1984].

16The method of [Tokuyoshi and Ogaki 2012b] is inspired by [Hermes
et al. 2010]. Therefore, the authors use the term global ray-bundles.

42

used to trace parallel rays. This method proves that layered depth
maps can be used to implement indirect lighting in real-time with a
rasterization-based pipeline.

The authors propose to use unsorted depth value sequences to reduce
the layered depth maps’s construction time. As such, theDD paths
must be found using a linear search which always goes to the end of
the list. Recall that using PSPPSLLs, this linear search can be ter-
minated early. Though note that PSPPSLLs were not documented
in the literature at the time the VPL-based hybrid was presented.

Imperfect Ray-bundle Tracing The principle behind imperfect
shadow maps can also be applied to Ray-bundle tracing [Tokuyoshi
and Ogaki 2012a]. In this approach, the layered depth maps are
generated from a point-based representation of the scene. That is,
each primitive in the scene is represented by a point instead. Un-
like imperfect shadow mapping, each point is then rasterized as a
circle and not quads. The latter proved to be too rough an approxi-
mation for this use case. The circles are then used in layered depth
map construction. The result is that fewer list nodes are generated
resulting in much faster rendering times. Of course, light leaks can
now occur since the point-based scene representation is coarse.

Predecessors The idea to rasterization to generate a coherent
set of parallel rays is old [Hachisuka 2005]. The problem has his-
torically been to generate the layered depth maps fast enough for
real-time purposes. For instance, the depth peeling approach is sug-
gested in [Hachisuka 2005]. Recall that we discarded depth peeling
early on since it requires a full geometry pass for each layer in the
Lp sequence (and discards each layer instead of storing them).

The idea to use coherent rays to accelerate ray-tracing to interactive
rates is even older [Wald et al. 2002]. The idea to just use coherent
rays traces back to the so-called global line radiosity method [Dutré
et al. 2006]. A similar line-based approach is known as intersection
fields [Ren et al. 2005]. However, these methods are not directly
based on layered depth maps so we will not go into further details
with them.

Offline Derivatives The method of [Hermes et al. 2010] can also
be implemented using PPSLLs to increase performance [Tokuyoshi
et al. 2011]. Though it is still intended for offline use (to compute
light maps). An interesting memory optimization is to use a tiled
multi-pass approach [Tokuyoshi et al. 2013]. In the latter, the PP-
SLLs are generated only for a small tile of the framebuffer at a time
(one tile in each pass). The memory usage is vastly reduced since
far fewer list nodes have to be stored for each pass. Of course, this
assumes that the unbounded memory requirements of PPSLLs are a
problem. This may indeed be the case in offline rendering where the
scenes are typically for more complex than in real-time rendering.

5.2.5 Ray-marching Layered Depth Maps

In the aforementioned methods, the layered depth map has been
used to trace rays in the direction which the layered depth map is
oriented. This requires the construction of a layered depth map
for each direction. Another approach is to trace in arbitrary direc-
tions by ray-marching through the layered depth map [Lischinski
et al. 1998; Bürger et al. 2007]. This approach is analogous to ray-
marching a depthmap (as done in HBAO). Instead of testing a single
depth values per pixel, the Lp sequences must be searched through.
As expected, this is a slow process. On the other hand, fewer lay-
ered depth maps needs to be generated. In fact, only three layered
depth maps in orthogonal directions are necessary; a so-called lay-
ered depth cube [Lischinski et al. 1998]. When tracing in direction,

ω, the layered depth map which is oriented closest to ω is chosen.
Then the chosen layered depth map is ray-marched.

Three orthogonal layered depth maps is the theoretical minimum.
In practice, rays that are almost orthogonal to the chosen layered
depth map will have to sample many Lp sequences. This can be
mitigated by using additional layered depth maps. The more lay-
ered depth maps, the less so-called pixel crossings (and the less Lp

sequences will have to be sampled) [Niessner et al. 2010]. As such,
it is sometimes more performant to use more than the theoretical
minimum number of layered depth maps in practice . The optimal
amount depends on the underlying implementation.

The ray-marching scheme is not perfect. Rays may miss intersec-
tions for steep depth values. A tolerance threshold for the intersec-
tion test can mitigate this issue [Niessner et al. 2010].

Applications include: Whitted ray-tracing of reflections [Bürger
et al. 2007], glossy reflections and soft shadows [Niessner et al.
2010], caustic photon tracing [Krüger et al. 2006], and path trac-
ing [Hu et al. 2014]. The first two are offline methods, the third is
interactive, and the last is real-time. We will go into further details
with the last method in the following paragraphs. Note the variety
of global illuminationmethods that have been implemented with the
ray-marching approach. Since directions can be chosen freely, only
performance restricts these approaches.

Voxel Grid Hybrid As briefly mentioned in Section 2, coarse
scene representations via voxel grids can be constructed in real-
time. A hybrid approach uses voxel grids for coarse ray-scene in-
tersections and then refines the intersection by ray-marching using
three orthogonal layered depth maps [Hu et al. 2014]. I.e., first an
intersection interval is found by tracing through the voxel grid in the
given direction, ω. Then, the layered depth map closest to ω is ray-
marched to find the precise intersection. Note that the intersection
interval from the voxel grid can be used to narrow the ray-marching
to only a few Lp sequences. Thus the problem mentioned earlier
with using the theoretical minimum number of layered depth maps
is effectively mitigated.

The voxel grid is simply a uniform grid. The layered depth maps are
implemented using PPSLLs. As such, a linear search (without early
termination) is needed to find the relevant depth value. Also, while
the coarse voxel intersection interval may narrow the ray-marching,
multiple Lp sequences may still have to be searched in full. Still,
the method produces convincing results in real-time. The authors
also propose to use progressive path tracing (and only reconstruct
the voxel grid and layered depth maps when the scene changes) [Hu
et al. 2014].

5.2.6 Photon Differentials

Section 5.1.4 skipped how photon differentials can be reflected or
refracted. Specular reflections and refractions can be described by
one to one mappings of ingoing and outgoing directions. As such,
the derivative specular reflection and refraction functions can be
readily found [Igehy 1999]. Thus it is possible to use photon differ-
entials for caustics [Frisvad et al. 2014]. Diffuse reflections, how-
ever, do not have a simple mapping of incoming to outgoing direc-
tions. This makes it difficult to find an expression for the derivative
tracing function.

Path Differentials Ray differentials have later been generalized
to so-called path differentials [Suykens and Willems 2009]. Path
differentials generalize the ray differentials to other domains besides
the image plane (uv-coordinates). Specifically, differentials based
on random sampling can be calculated. For every tracing event

43

(transfer, reflection, refraction, etc.), the path differential stores the
differential parameters used in the generation of the new path ver-
tex. Such a generalized parametrization can also be used to compute
photon differentials from arbitrary light sources (generalizing from
just point lights) [Frisvad et al. 2014].

Diffuse Reflection Path differentials introduce the mechanism
needed for diffuse reflection: Sampling the outgoing direction at
random (as done in path tracing). However, the number of parame-
ters in the path differential grows for every interaction which is un-
wanted. The solution of [Fabianowski and Dingliana 2009] is to in-
terpret diffuse reflection as an absorption directly followed by a re-
emission. This ensures the set of differential parameters is constant
which is useful for interactive purposes. Specifically, the photon
differential is reconstructed as if the photon had just been emitted
from the light source (but now in the diffusely reflected direction).
With re-emission, however, all previous scene interactions recorded
in the photon differential is lost. The solution is to virtually offset
the photon before re-emission. The virtual offset is based on the cur-
rent positional and directional differentials (see [Fabianowski and
Dingliana 2009] for the specifics). Thus previous scene interactions
are roughly retained in the differential.

Russian roulette can also be applied to path differentials [Suykens
and Willems 2009]. Again, such a stochastic mechanism requires
additional parameters to be stored in the differential. To keep the
number of parameters constant, the existing differentials can instead
be scaled according to the outcome of the Russian roulette [Fabi-
anowski and Dingliana 2009]. That is, by increasing the size of the
photon footprint by a factor 1

p
where p is the probability of the event

occurring. As in conventional photon mapping, Russian roulette is
used to terminate the tracing stochastically.

Using the above-mentioned methods, diffuse reflections are possi-
ble and can be done at interactive rates [Fabianowski and Dingliana
2009]. The authors use GPU acceleration through CUDA. Equation
27 is computed conventionally by using a bounding volume hierar-
chy as the photon map.

44

Figure 27: Photon splitting. The primary photon is split into multi-
ple secondary photons. Each secondary photon is weighed accord-
ing to the BRDF at the surface intersection.

5.3 Design

Wewill now describe our approach to indirect lighting using on lay-
ered depth maps. As mentioned earlier, we base our method on pho-
ton differentials. The layered depth maps are used for photon trac-
ing as inspired by previous approaches. First, we outline a method
to diffusely reflect photon differentials. Second, we outline an al-
gorithm which can be used to implement photon differentials in a
rasterization-based pipeline. Third, we propose a slight modifica-
tion which allows us to omit the photon storage.

5.3.1 Deterministic Diffuse Reflection of Photon Differentials

Traditionally, photons are traced as atomic quantities. That is, pho-
tons are either reflected or absorbed but never split in two [Jarosz
et al. 2008]. Russian roulette is used to determine which event will
occur (and the photon’s radiant flux is weighed accordingly). This
ensures two things:

• The total number of photons is kept constant. I.e., if ne pho-
tons are emitted from the light sources then ne will be stored
in the photon map.

• Photons are prioritized according to the number of light
bounces because each bounce depends on the outcome of the
former. E.g., the fourth bounce will not even occur of the
third bounce was absorption. Thus longer photon paths are
less likely than shorter ones.

The first property ensures that thememory requirements for the pho-
ton map are bounded. The second property is good because light be-
comes less visually important the more it bounces around. That is,
the first few light bounces are enough to create visually convincing
results.

Alternatively, reflection can be modelled by splitting photons
[Jarosz et al. 2008]. A single photon is split into multiple pho-
tons each weighed by the surface properties at the point of reflection
(Figure 27). E.g., a photon can be split into two new photons: One
for the diffuse direction and another for the specular direction (and
weighed accordingly). The problem with such an approach is that
the number of photons increases exponentially with the number of
light bounces. On the other hand, photon splitting is deterministic.

Still, diffuse reflection is a problem since there is not a one-to-one
mapping between the incoming and outgoing direction (as in a per-
fect specular reflection). We propose to choose the outgoing di-
rections deterministically. Specifically, we sample the hemisphere
uniformly using the deterministic approach described in Section
4.3.2. This results in N fixed outgoing directions. Thus we pro-
pose to split the incoming photon into N outgoing photons; one
in each of the outgoing directions. To limit the number of gener-
ated photons, the photons are absorbed after the first bounce. This
our method produces LDDE paths. See Section 7.2.1 for a multi-
bounce extension. Each of the N outgoing photons are weighed
by the surface’s BRDF. Since the N outgoing directions are sam-
pled uniformly, this approach fits best to Lambertian surfaces with
a constant BRDF. However, it is not limited to such and any BRDF
can be used (though many unimportant directions may be traced in
vein).

Updating the Photon Differentials To find a derivative diffuse
reflection function, we first describe regular diffuse reflection in
terms of the above approach. Let ωi be the incoming direction of
the photon and let ωo be one of theN outgoing directions in which
a new photon is traced. Upon diffuse reflection, the ray r = (x, d)
results in the r∗ = (x∗, d∗) where

x∗ = x

d∗ = α(ωi, ωo) · d · ᾱ(ωi, ωo)

The α(ωi, ωo) term is the rotation quaternion which represents the
rotation of vector ωi to vector ωo. ᾱ is the conjugate of α. Note
that d is implicitly converted to a pure quaternion (and back). The
· operator is the Hamilton product. Informally, the expression qdq̄
denotes the rotation of d by the rotation quaternion q. We will de-
scribe quaternion rotation in more detail shortly. Note that α does
not depend on neither x or d. Thus α is also independent of the
corresponding uv-coordinates. This leads to the following straight-
forward derivative diffuse reflection functions

Dux
∗ = Dux

Dud
∗ = α(ωi, ωo) ·Dud · ᾱ(ωi, ωo)

The positional differential is unchanged and the directional differen-
tial is rotated according to α. Analogous expressions can be derived
for the v-coordinate.

Defining α The α function is described in full detail in [Sam
2014]. We will repeat the important parts here. A rotation quater-
nion, q, is defined as

q(v, θ) =

(
sin θ

2
vx, sin

θ

2
vy, sin

θ

2
vz, cos

θ

2

)
= sin θ

2
(ivx + jvy + kvz) + cos θ

2

where v is the rotation axis (a unit vector) and θ is the angle of
rotation. i, j, k are the unit vectors spanning the Cartesian coordi-
nate system. Recall that α(ωi, ωo) is the rotation quaternion which
represents the rotation of vector ωi to vector ωo. The function
α(ωi, ωo) can then be defined as follows

α(ωi, ωo) = q

(
ωi × ωo

∥ωi × ωo∥
, cos−1(ωi · ωo)

)
assuming that ωi and ωo are normalized. The× operator is the vec-
tor cross product and · operator is the vector dot product. α can be
understood intuitively by inspecting the geometric operations. The
cross product produces a vector orthogonal to both operands. This

45

becomes the rotation axis (v). The dot product results in the cosine
of the angle between the two vectors. This becomes the rotation
angle (θ).

By further assuming that ωi and ωo are not parallel, it can be shown
[Sam 2014] that α reduces to

α(ωi, ωo) =
(αx, αyαzαw)

∥(αx, αyαzαw)∥

where

(ax, ay, az) = ωi × ωo

αw = 1 + ωi · ωo

The ∥·∥ operator is the Euclidean norm. This approach readily ap-
plies to graphics hardware.

Quaternion Rotation Let d be the vector that should be rotated
by rotation quaternion, q. The resulting vector, d∗ is then

d∗ = q · d · q̄

where q̄ is the conjugate of q and the · operator is the Hamilton
product [Baker 2015]. Note that d is implicitly converted to a
pure quaternion (the coordinate is zero, w = 0) and back again
(by discarding the w-coordinate). Conjugation is simply q̄ =
(qx,−qy − qz − qw). The Hamilton product is more involved. It
can be shown [JeGX 2014] that the rotation reduces to

d∗ = d+ 2 (qxyz × (qxyz × d+ qwv))

which readily applies to graphics hardware.

5.3.2 Photon Differentials with Layered Depth Maps

The choice of deterministic uniform sample directions directlymaps
to tracing in layered depth maps. As such, we can also use lay-
ered depth maps as an auxiliary data structure for tracing photon
differentials. Furthermore, the operations used to update the pho-
ton differentials readily applies to graphics hardware. We propose
an algorithmwhich requires two passes (besides layered depth maps
construction):

1. Photon Tracing. Photon differentials are traced from a light
source into the scene. Upon the first intersection, the incom-
ing photon differential is split into N outgoing photon differ-
entials according to the BRDF at the intersected surface. Said
photon differentials are then stored in an unordered photon
buffer.

2. Photon Splatting. The photon differentials from the photon
buffer is splatted onto the image plane. The extent of the splats
are determined from the photons footprint.

Note that we propose to use an unordered photon buffer. We use this
notation since photon maps typically implies a hierarchical struc-
ture. In contrast, our photon buffer is simply flat and unsorted. The
photon buffer can be implemented using a simple array of contigu-
ous memory. We will go into further detail in the following para-
graphs

Photon Tracing We limit our methods to point light sources. As
such, the photon tracing can be initiated by rendering the scene from
the light’s point of view. This has the added benefit that we can
use the ray differential theory (explained earlier) to trace the photon
differentials with respect to the uv-coordinates. A photon is emitted
for each pixel rendered. Thus the resolution of this step determines

how many primary photons are emitted. We denote this resolution
Rlight. The tracing itself is done in a fragment shader. The next
point of intersection in the photon’s outgoing direction is found with
trace(r) function (Section 3.3) via layered depth maps. A total of
N secondary photons are emitted for each primary photon (each
in their own direction). Finally, the photon differentials are stored
in an SSBO in arbitrary order. Specifically, we store the photon’s
position in WC, the normal of the intersected surface, the positional
differential, and the photons radiant flux. The latter two are used in
the irradiance estimate.

Photon Splatting The photon buffer is rasterized as a set of
points. A geometry shader expands each point into a quad aligned
with the photon’s footprint. Lastly, a fragment shader splats the
photon’s contribution to the framebuffer. This is similar to the work
of [Frisvad et al. 2014] but using rasterization instead of searching
for eye paths that overlap with the footprint. Thus we evaluate each
term of the sum in Equation 27 independently and splat the result
to the relevant pixels. The result is the same. We use Silverman’s
second-order kernel (Equation 22) for K as done in [Frisvad et al.
2014].

5.3.3 Skipping the Photon Buffer

In principle, it is possible to combine the Photon Tracing and Pho-
ton Splatting passes into a single pass. That is, by splatting the
photon directly as soon as it has been traced. This saves both the
overhead of the second pass and storing the photon buffer. The
problem is that the splatting cannot be done directly to the frame-
buffer since the latter is currently mapped to the tracing algorithm.
Thus we need a mechanism that allows a fragment shader to write to
an arbitrarily large region of an auxiliary image. This can be done
with the the so-called image-load-store extension [Bolz et al. 2014b]
or using an SSBO.

The next problem is to rasterize the photon splat directly in the frag-
ment shader. This can quickly become involved. We propose to use
the photon splat’s screen-aligned quad is this can be trivially found
from the positional differential. The problem with using a screen-
aligned quad is that a lot of computational power may be wasted
on pixels where the splat doesn’t contribute. Still, this is mostly a
problem for splats which are diagonal in image-space. For splats
which are coarsely screen-aligned, the overhead is negligible.

46

Passes Storage

Photon Tracing
Light view

Screen-aligned Quad

Composition
Compute direct light
and get indirect light

from texture
Screen-aligned Quad

Photon Splatting
User view

Photon Bu�er

Data Bu�er
List nodes and
head indices

SSBO

Photon Bu�er
SSBO

Indirect Light
Texture

G-bu�ering
User view

Scene Geometry

G-bu�er
Depth, normals, and

BRDF properties
Textures

G-bu�ering
Light view

Scene Geometry

Light G-bu�er
Depth, normals, and

BRDF properties
Textures

Figure 28: Overview of photon tracing and splatting.

5.4 Implementation

In this section, we will describe how to implement our indirect light-
ing method. First, we describe how the tracing pass is implemented.
Second, the splatting pass is detailed. Third, we explain why the
photon buffer is actually necessary in practice.

5.4.1 Tracing Photon Differentials Using Layered Depth
Maps

This pass is rendered over the scene geometry from each lights’
point of view. It is described in the context of a fragment shader.
The corresponding vertex shader is trivial and has been omitted.
The tracing pass is divided into the following steps

1. Calculate Radiant Flux. Each photon’s radiant flux, Φp, is
based on the light’s total radiant flux, Φlight.

2. Initialize Photon Differential. This is done using the pixel’s
uv-coordinates and the light’s orientation. Let x0 be the pho-
ton’s position on the light source and let d0 be it’s initial di-
rection.

3. Transfer Photon Differential. Transfer from x0 to the first
intersected surface, x1. The direction is unchanged, so d1 =
d0.

4. Split Photon. Let N be the number of layered depth maps.
Then a photon is traced in both directions of each layered

depth map (totaling in 2N photons). For each corresponding
direction d2:

(a) Compute x2 = trace(x1, d2); the intersection with the
first diffuse surface.

(b) Project x2 into the user’s view. Discard the photon if it
is not visible.

(c) Diffusely reflect the photon differential from d1 to d2.

(d) Transfer the photon differential from x1 to x2.

(e) Store the photon differential in the photon buffer.

In the Split Photon step, the photon is first traced (a) before the
differential is updated (c,d). This is done is done so that occluded
photons can be rejected early (b). The following paragraphs will
go into details. Also note that the primary photons (from the light
source) are not stored. Only indirect photons are stored. As such,
the splats will only contribute with indirect lighting. A third pass is
needed to compute direct lighting. This can be done using conven-
tional rasterization. Please refer to Figure 28 for an overview.

Calculate Radiant Flux The light’s total radiant flux, Φlight,
must be split between all the photons. Recall that the formula is

Φp =
Φlight
ne

where ne is the number of emitted photons. We split this into two
quantities: The number of primary photons (ne,p) and secondary
photons (ne,s). The former originates from the light source and the
latter are the split photons. A primary photon is emitted for each
fragment. Thus ne,p is a function of the resolution, Rlight. To
produce a spot light, however, fragments outside the unit circle (in
half texture coordinates (TC)) are culled

1 // Radius in half texture coordinates [0;0.5]
2 float radius = length(gl_FragCoord.xy /

window_dimensions - vec2(0.5));
3 // Discard fragments outside the unit circle
4 if (radius > 0.5) discard;

Note that we don’t normalize to [0; 1] since it is redundant17. Thus
we must account for the fragments lost due to this culling. The ratio
of unculled fragments to the initial amount of fragments is

Aunit circle
Aunit square

=
πr2

(2r)2
=

π

4

Thus the total number of primary photons is ne,p = π
4
Rlight.

Next, the number of secondary photons must be estimated. For each
primary photon, 2N secondary photons are emitted. Thus ne,s =
2Nne,p. Since only photons due to indirect lighting are stored, we
use

ne = ne,s =
π

2
NRlight

The corresponding GLSL code is

1 // The light's radiant flux is found in a uniform
2 const vec4 Phi_light = /* */;
3 const int R_light = light_view_dimensions.x *

light_view_dimensions.y;

17This step can be further optimized by computing the squared length
with a dot product instead. We simply use the length function for peda-
gogical reasons.

47

4 const int n_e = int(2.0 / PI * N * R_light);
5 // Each photon's radiant flux
6 const vec4 Phi_p = Phi_light / float(photon_count);

Initialize Photon Differential We directly apply the formulas
given in Sections 5.1.4. We use the following self-explanatory
structure for organization

1 struct photon_differential
2 { vec3 Du_x, Dv_x, Du_d, Dv_d; };

The construction routine itself is straightforward but lengthy. It is
given in Listing 7. We call it like this

1 // Rename for consistency with theory
2 vec3 d_hat = vertex.wc_view_ray_direction;
3 photon_differential photon =

construct_photon_differential(d_hat,
current_view.right, current_view.up);

where the vertex.wc_view_ray_direction is passed in directly
from the vertex shader. This is part of a trick to cheaply reconstruct
the position in WC in rasterization [Mittring 2007].

Transfer Photon Differential The transfer function is likewise
straightforward but lengthy. It is given in Listing 8. It is called as
follows

1 // Rename for consistency with theory
2 vec3 wc_n = wc_normal;
3 vec3 d = normalize(d_hat);
4 float t = -ec_position_z;
5 transfer(ray, d, wc_n, t);

Note that t is directly available through a depth map lookup (and a
subsequent linearization).

Split Photon The splitting is done in a loop

1 // Rename for consistency with theory
2 vec3 wc_x = wc_position;
3 // BRDF
4 vec4 f = rho_d / PI; // [sr^-1]
5 // Splitting
6 for (int i = 0; i < N; i++)
7 store_first_bounce_in_both_directions(
8 i,
9 photon,
10 wc_x,
11 wc_n,
12 Phi_p * f);

We use the constant Lambertian BRDF. This could in princi-
ple be replaced with any BRDF. Also note that called procedure
store_first_bounce_in_both_directions will actually store
two photons (one in each trace direction). This is similar to the
approach we choose for AO. The sub-steps of the this procedure are
explained next.

(a) The trace function is completely analogous to the one used
in Section 4.4.1. We do augment it to also store the positions
(wc_x_previous and wc_x_next) of the intersected surface in each
direction. This change is trivial.

(b) The projection is done using the project_wc_to_sc routine
(Listing 4). We augment this routine to also return the pho-
ton’s depth value in eye coordinates (EC) from the user’s view

(ec_z_seen_by_user). This depth is tested against the photon’s
actual depth value (ec_z_actual) to discard occluded photons. In
the following, we use the previous intersection (x_previous) as an
example:

1 // The actual depth value
2 float ec_z_actual = (user_view.view_matrix * vec4(

wc_x_previous, 1.0)).z;
3 // x_previous in screen coordinates
4 ivec2 sc_x_previous;
5 // The observed depth value
6 float ec_z_seen_by_user;
7 // Only use visible photons
8 if (project_wc_to_sc(wc_x_previous, ldm_view,

sc_x_previous, ec_z_seen_by_user)
9 && ec_z_seen_by_user < ec_z_actual + const_bias)
10 {
11 /* Use photon */
12 }

The const_bias variable is used to control threshold of the depth
test. This is needed due to finite floating point precision.

(c, d)Diffuse reflection is done es explained in Section 5.3.1. While
the rotation quaternion q is in principle four-dimensional, it can be
interpreted as a tuple of a three-dimensional vector and the rotation
angle. As such, it can be represented in GLSL as

1 vec4 q = vec4(v, theta);

where v is a vec3 and theta is a float. Thus the α function can
be implemented as follows

1 vec4 alpha(in vec3 w_i, in vec3 w_o) {
2 return normalize(vec4(
3 cross(w_i, w_o),
4 1.0 + dot(w_i, w_o)));
5 }

Similarly, quaternion rotation can be implemented just as presented
in the formula

1 vec3 rotate_vector(vec4 q, vec3 v) {
2 return v + 2.0 * cross(
3 q.xyz,
4 cross(q.xyz, v) + q.w * v);
5 }

Note that no expensive trigonometric functions are used. Just cross
products and dot products which maps well to graphics hardware.

The diffuse reflection of the photon differential is then straight-
forward. It is shown in Listing 9. Thus reflection and transferring
just becomes calls to the corresponding procedures

1 // Rename for consistency with theory
2 vec3 w_i = normalize(-vertex.wc_view_ray_direction);
3 vec3 w_o = normalize(-ldm_view.forward);
4 vec3 wc_n_p = /* G-buffer lookup */;
5 float t = distance(wc_x, wc_x_previous);
6 // Reflect and transfer
7 diffusely_reflect(photon, w_i, w_o);
8 transfer(photon, w_o, wc_n_p, t);

Analogously, the same method can be applied to the photon traced
in the other direction (corresponding to wc_x_next). In this case,

1 vec3 w_o = normalize(ldm_view.forward);

48

1 photon_differential construct_photon_differential(in vec3 d_hat, in vec3 right, in vec3 up) {
2 vec3 Du_d = (dot(d_hat, d_hat) * right - dot(d_hat, right) * d_hat) / pow(dot(d_hat, d_hat), 3.0 / 2.0);
3 vec3 Dv_d = (dot(d_hat, d_hat) * up - dot(d_hat, up) * d_hat) / pow(dot(d_hat, d_hat), 3.0 / 2.0);
4 return photon_differential(vec3(0.0), vec3(0.0), Du_d, Dv_d);
5 }

Listing 7: Construction of a photon differential.

1 void transfer(inout photon_differential photon, in vec3 d, in vec3 n, in float t) {
2 float Du_t = -dot((photon.Du_x + t * photon.Du_d), n) / dot(d, n);
3 float Dv_t = -dot((photon.Dv_x + t * photon.Dv_d), n) / dot(d, n);
4

5 photon.Du_x = (photon.Du_x + t * photon.Du_d) + Du_t * d;
6 photon.Dv_x = (photon.Dv_x + t * photon.Dv_d) + Dv_t * d;
7 }

Listing 8: Transfer of a photon differential.

Otherwise, the methods are the same.

(e) Recall that radiant flux is traced the same way as radiance. Thus
we are still missing to compute the cosine term which accounts for
projection. This is done next.

1 float cos_theta = dot(wc_normal, w_o); // [sr]
2 float Phi_p = Phi_p_and_f * cos_theta; // [W]
3 if (0.0 < cos_theta)
4 store_photon(wc_next, wc_hit_normal, photon,

Phi_p);

where Phi_p_and_f (Φpfr) was passed in earlier. Note that we
only store the photon if it actually contributes. The photon differ-
entials are stored in an SSBO called photons. The store_photon
procedure is given in Listing 10.

Footprint Culling Note the /* Footprint culling */ com-
ment in Listing 10. This is an optional step which discards photon’s
whose footprint are larger than a certain threshold, Tfoot. This is
because large photon footprints have two negative properties: They
are costly to splat and contribute little to the overall image. The
footprint culling is done by testing the max norm of the differential
against Tfoot

1 // Footprint culling
2 // Find the max norm of the differential
3 vec3 abs_x = max(abs(photon.Du_x), abs(photon.Dv_x));
4 float max_x = max(max(abs_x.x, abs_x.y), abs_x.z);
5 // Discard large footprints
6 const float T_footprint = 0.5;
7 if (T_footprint < max_x) return;

This culling mechanism introduces additional bias in the algorithm.
On the other hand, performance is improved. We investigate the
impact of Tfoot in Section 6.2.5.

Source Code The complete GLSL code can be found in the ap-
pendix.

5.4.2 Photon Splatting

The photon buffer generated in the previous pass is sent through the
rasterization pipeline in the next pass. This is simply a matter of
rebinding the underlying buffer object as a vertex array (instead of
an SSBO) and issuing a draw call (as points). The properties stored

through the previous SSBO binding can then be accessed as vertex
attributes directly in the vertex shader. E.g.,

1 layout(location = 0) in vec3 wc_x;
2 layout(location = 1) in vec3 wc_n;
3 layout(location = 2) in vec3 Du_x;
4 layout(location = 3) in vec3 Dv_x;
5 layout(location = 4) in vec4 Phi; // [W]

This pass is rendered over a full-screen quad. The scene informa-
tion is available through the G-buffer. The splatting itself is best
explained in terms of the three shader stages:

1. Vertex Shader. The irradiance estimate is made here.

2. Geometry Shader. The positional differential is used to ex-
pand the point into a quad.

3. Fragment Shader. The kernel function,K, is applied and the
result is written to the framebuffer. Additive blending is used
so that the sum in Equation 27 is computed.

Please refer to Figure 28 for an overview. We will go into further
details in the following paragraphs.

Vertex Shader First, the global scale parameter, s, is applied to
the photon differential

1 photon.Du_x = Du_x * s;
2 photon.Dv_x = Dv_x * s;

In this context, photon refers to the vertex attributes which are sent
to the next shader stage. At this point, we also set the previously-
mentioned a parameter (controlling topological bias). In practice,
we found that a = scale worked nicely. This also reduces the
number of empirical parameters. Next, the Mp matrix (Equation
26) is computed

1 photon.M = mat3_from_rows(
2 cross(photon.Dv_x, wc_n),
3 cross(wc_normal, photon.Du_x),
4 a * wc_n);
5 photon.M *= 2.0 / dot(
6 photon.Du_x,
7 cross(photon.Dv_x, wc_n));

Note that we use a custom matrix constructor, mat3_from_rows,
since the default mat3 constructor is column-wise. We also use in-
clude the third row ofM which has the topological bias parameter

49

1 void diffusely_reflect(inout photon_differential photon, in vec3 w_i, in vec3 w_o) {
2 vec4 q = alpha(w_i, w_o);
3 photon.Du_d = rotate_vector(q, photon.Du_d);
4 photon.Dv_d = rotate_vector(q, photon.Dv_d);
5 }

Listing 9: Diffusely reflect of a photon differential.

1 void store_photon(in vec3 wc_x, in vec3 wc_n, in photon_differential photon, in vec4 Phi_p) {
2 /* Footprint culling */
3

4 uint32_t id = atomicCounterIncrement(photon_count);
5

6 photons[id].wc_x = vec4(wc_x, 1.0);
7 photons[id].wc_n = vec4(wc_n, 0.0);
8 photons[id].Du_x = vec4(photon.Du_x, 0.0);
9 photons[id].Dv_x = vec4(photon.Dv_x, 0.0);
10 photons[id].Phi = Phi;
11 }

Listing 10: Storing photon differentials.

(a). As mentioned earlier, this row can be omitted for added per-
formance. Alternatively, the angle between the photon’s recorded
surface normal (wc_n) can be compared directly to the actual sur-
face normal in a later step. E.g., using a dot between between
the normals. We choose to include topological bias directly in M
since graphics hardware is optimized for matrix vector multiplica-
tion (and not for comparisons).

Lastly, the irradiance estimate (Equation 24) is made

1 float A_p = PI / 4.0 * length(cross(
2 photon.Du_x,
3 photon.Dv_x)); // [m^2]
4 photon.E = Phi / A_p; // [W * m^-2]

Geometry Shader The geometry shader takes a single point as
input and emits a quad (in the form of a triangle strip). The input
vertex has the photon data

1 in photon_data {
2 vec3 wc_x, Du_x, Dv_x;
3 vec4 E;
4 mat3 M;
5 } photon[];

Note that this is declared as an array even though there is only a
single point. This is merely a convention imposed by GLSL. The
geometry shader emits vertices that we refers to as splats

1 out splat_data {
2 flat vec3 wc_position;
3 flat mat3 M;
4 flat vec4 irradiance;
5 } splat;

All attributes are declared as flat since no interpolation is needed.
The quad generation itself is straight-forward but lengthy. It is given
in Listing 11. We use the helper function cc_position to project
the vertices into clip coordinates (CC).

Fragment Shader Lastly, the splat is actually written to the
framebuffer

1 // Get scene properties
2 vec3 wc_position = /* G-buffer lookup */
3 vec4 rho_d = /* G-buffer lookup */
4 // Radiance estimate
5 float l = length(splat.M *
6 (wc_position - splat.wc_x));
7 vec4 f = rho_d / PI;
8 L_o = PI * K(l) * f * splat.E;

Note that we use a Lambertian BRDF. As stated earlier, this can
easily be replaced with BRDF. The resulting radiance is written di-
rectly to the framebuffer

1 layout(location = 0) out vec4 L_o;

Source Code Please refer to the appendix for the full source code.

5.4.3 Skipping the Photon Buffer

In Section 5.3.3, we hinted that the photon buffer could be skipped
entirely. This was actually our first approach. Unfortunately, it
turns out that splatting to an SSBO is very inefficient on current
graphics hardware. Thus this approach was not viable in practice.
We hope that future improvements in GPU architecture will im-
prove the situation. As we will soon see, photon splatting is still
the bottleneck of our indirect lighting method.

50

1 vec4 cc_position(in vec3 wc_offset)
2 { return view_projection_matrix * vec4(photon[0].wc_position + wc_offset, 1.0); }
3

4 void main() {
5 splat.wc_position = photon[0].wc_position;
6 splat.irradiance = photon[0].irradiance;
7 splat.M = photon[0].M;
8

9 gl_Position = cc_position(0.5 * (-photon[0].Du_x - photon[0].Dv_x));
10 EmitVertex();
11

12 gl_Position = cc_position(0.5 * (-photon[0].Du_x + photon[0].Dv_x));
13 EmitVertex();
14

15 gl_Position = cc_position(0.5 * (photon[0].Du_x - photon[0].Dv_x));
16 EmitVertex();
17

18 gl_Position = cc_position(0.5 * (photon[0].Du_x + photon[0].Dv_x));
19 EmitVertex();
20 }

Listing 11: Converting photon differentials into splat quads.

51

6 Results and Findings

In this section, we will evaluate our implementation. The evalua-
tion will be both in terms of performance but also correctness. The
former is measured quantitatively in milliseconds whereas the later
is done qualitatively against a path traced reference. For the AO,
we will also compare our implementation against HBAO. First, we
evaluate the AO method. Second, we evaluate the indirect lighting
method. Third, we show a combination of the two approaches.

Evaluation Settings All images are rendered in 800 × 800 res-
olution. We encourage readers of the PDF file to zoom in and see
the images in full resolution. We have performed all tests on two
different Nvidia GPUs: The GeForce GTX 480 and GeForce GTX
780 Ti. Please refer to Table 2 for additional details.

Note that for the GTX 780 Ti, it was necessary to use a memory bar-
rier in the layered depth map construction pass (see Section 3.4.2).
This is to be expected as the memory barrier is theoretically re-
quired. Furthermore, for some configurations it was also neces-
sary to use the previously-mentioned atomicAdd workaround due
to driver issues (see Section 3.4.3). We have marked tests using
the workaround with an asterisk (*). We describe the impact of the
workaround in Section 6.3.

6.1 Ambient Occlusion

First, we scale the attenuation parameter (dmax) to see how well
our method captures local as well as global scene information. Sec-
ond, we scale the number of layered depth maps (NLDM) to see
how image quality can be traded for performance. Third, we scale
the resolution of the layered depth maps (RLDM) while using an
unattenuated visibility term to see how close we can get to the path
traced reference. Fourth, we test the normal offset used to remove
artifacts for thin surfaces.

The HBAO method has the following parameters: Number of di-
rections traced (NHBAO) and the number of ray-marching steps in
each direction (SHBAO). Furthermore, we use the variable M to
denote the memory usage of the data buffer in which the list nodes
and head pointers are stored.

Figure 29: Sampling error due to thin geometry. A sample position
(yellow circle) is being traced in a layered depth map. The projec-
tion has correctly found the nearest Lp sequence. Now, the Lp se-
quence is being traversed to find the nearest sample. However, the
nearest sample (red circle) actually belongs to the backface. Thus
the tracing algorithm fails to find the real intersection (green cir-
cle). This happens when the geometry is thin and the surface normal
is at an oblique angle to the layered depth map (as pictured).

For each test, we provide both the overall frame time (written in
bold) and the sub-timings of individual passes (written underneath).
We have not included sub-timings for all aspects of rendering but
only for the major passes. E.g., the G-buffer pass has been omitted.
Thus the sub-timings do not necessarily add up to the overall time.

6.1.1 Scaling dmax

We have used an exponential attenuation function

V (x, ωi, d) = min
(

d

dmax
, 1

)2

since this is also what is implemented in the path traced reference.
The HBAO method uses deterministic sampling directions just like
the layered depth maps (to get a better comparison). We have tested
dmax using the values 80 cm, 160 cm, 320 cm, 640 cm, and 1280 cm
(Table 3). All other parameters are kept constant (see the caption).
We have chosen a relatively low NLDM in order to get reasonable
performance.

It is clearly evident that our approach is closer to the path traced ref-
erence for large dmax. This is to be expected since HBAO is lim-
ited to the information available in the depth map. As such, HBAO
does not have the same global scene information available as can
be found in the layered depth maps. However, HBAO is indeed the
fastest of the too approaches even for large dmax. It’s somewhat
surprising how well HBAO scales in terms of performance since
larger dmax implies that texture fetches are further apart (causing
cache misses). Still, we only observe a 1 ms difference from the
dmax = 80 cm to dmax = 640 cm. In fact, HBAO’s performance
improves for dmax = 1280 cm. We hypothesize that this is because
the ray-marching distance is so large that depth map lookups are at-
tempted outside the visible region (thus not resulting in an actual
texture fetch).

For HBAO, performance is consistent across both cards. Of course,
the GTX 780 Ti is notably faster (being a newer card with better

52

Name Dedicated VRAM L2 Cache Memory Bandwidth Driver Platform

GeForce GTX 480 1536 MB GDDR 5 768 KB 177.41 GB/s Driver 344.75 Windows 8.1

GeForce GTX 780 Ti 3072 MB GDDR5 1536 KB 336.0 GB/s Driver 347.25 Windows 7

Table 2: Hardware configuration.

specifications). For our approach, we do see an interesting differ-
ence. The GTX 480 uses the majority of the frame time on layered
depth map construction. On the GTX 780 Ti, the construction time
is equal to the time spent actually tracing AO. Moreover, construc-
tion on the GTX 780 Ti is approximately a factor 3 times faster than
on the GTX 480. It is difficult to attribute this difference to any
specific hardware difference. We hypothesize that the improved
memory bandwidth helps tremendously. Specifically, since storing
the list nodes may cause many cache misses. Of course, the larger
L2 cache also helps to reduce cache misses overall. Note that per-
formance is also completely independent of dmax. This is opposed
to traditional SSAO methods where a larger dmax means a larger
sample radius and thus worse performance. Though as mentioned
above, this is seemingly not really an issue for HBAO.

In direct comparison, there is no doubt that HBAO is faster than
layered depth maps. More than twice as fast consistently. More-
over, HBAO produces fewer artifacts in that time. Banding arti-
facts are clearly visible in our methods even for dmax = 80 cm.
We could use a smaller NLDM to improve performance but the
artifacts would become even worse. At the current level, we pos-
tulate that the artifacts will be somewhat hidden by texture details
and direct lighting. If not, a blurring pass can be applied though this
requires additional frame time.

Our method only shines on one front: correctness. If physically-
based rendering is a key priority, then our method is the better
choice. Performance-wise, we hope to see improvements on newer
hardware of the same magnitude observed between the GTX 480
and the GTX 780 Ti. Note that the total memory use is only
M = 25.24MB. As such, memory requirements do not seem to
be a problem for this configuration. Likewise, the clear pass is neg-
ligible in the overall frame time.

6.1.2 Scaling N

The main source of artifacts in our method are due to under-
sampling the integral. Thus we scale N to see the effect on image
quality and performance. We have tested N using the values 32,
64, 128, 256, and 512 (Table 4). To make the comparison fair, we
scale both NLDM and NHBAO simultaneously.

In our method, the image quality is clearly improved for larger N
. For N = 512 it is very close to the reference. Still, low scale
geometric details are not captured. This is especially visible in the
plants which lack shadowing. This is due to the limited resolution,
RLDM = 200× 200. That is, the layered depth map are to coarse
to distinguish between individual leaves. This is also due to the
sponza being a large scene. I.e., each layered depth map must be
spread out to cover the whole scene thus reducing the small-scale
definition. Another noticeable artifact is the banding in the floor.
This is due to the deterministic sampling approach. As such, only
large N can improve on the situation.

HBAO still struggles to capture large scale details. The only real
improvement is that there are fewer banding artifacts for large N .
It is clearly evident that HBAOdoes not produce correct results even
for large N . Note that we have even set SHBAO = 128 which is
very costly. Notice the wrong shadows between the pillars and the

chains. These are caused by missing information. Specifically, that
the depth map does not contain information about the other side of
the chain. That is, HBAO does not know that the chain is actually
a small occluder. In conclusion, the HBAO approximations are too
rough to converge to the physical correct result for large dmax. Still,
small-scale effects are captured nicely.

In both approaches, the improved image quality comes at a perfor-
mance cost. Specifically, the frame time is approximately directly
proportional toN on both GPUs. Again, we observe the same trend
that the construction dominates on the GTX 480 whereas it is equal
to the AO computation for the GTX 780 Ti. The same explanation
applies. Note that not only is the overall frame time proportional
toN ; all sub-timings are also proportional. This makes sense since
each step is implemented as a loop overN . The memory usage,M ,
also increases proportional toN for the same reasons. Specifically,
M = 805MB for N = 512. This is clearly an impossible mem-
ory requirement for real-time applications since there must also be
room for textures, models, animations and so on. However, at a
frame time of 512.4 ms this configuration can hardly be called real-
time anyhow. As such, we suggest that configurations with largeN
should be reserved for either interactive or offline purposes.

6.1.3 Unattenuated Visibility and Scaling RLDM

We test with an unattenuated visibility function, V (x, , ωi), such as
used in the physically correct version of AO. Since the ray-marching
length in HBAO depends on dmax, we cannot compare against
HBAO in this test. This is also another indication that HBAO is
not physically correct.

Furthermore, we noted that scalingN produced good quality. Thus
we now scale RLDM to see the resolutions effect on performance
and image quality. We testRLDM using the values 50×50, 100×
100, 150 × 150, and 200 × 200 (Table 5). Furthermore, we also
test our approach on the hairball model which is typically used in
AO comparisons.

The first observation is thatRLDM affects the memory usage. One
would normally expect that doubling the resolution leads to four
times the memory requirements,M . However, this is not observed.
At most a doubling ofM is observed and often lower. We hypoth-
esize that this is due to uneven depth complexity. That is, the mem-
ory usage is not evenly distributed over the layered depth map (as
it would be for a regular depth map). This hypothesis is backed by
the fact that for the sponza (which has very uneven depth complex-
ity),M consistently increases very little (less than double) each time
RLDM is doubled. In contrast, the hairball (which has a more even
depth complexity) sees a large increase inM (sometimes more than
double) each time RLDM is doubled.

The memory usage alone is also interesting. Note that rendering
the hairball was not even possible on the GTX 480 for RLDM =
150 × 150 and beyond. This is because the layered depth maps
simply do not fit into the available memory. The GTX 780 Ti was
able to render the hairball for large RLDM since it has double the
memory of the GTX 480. This is also the reason that we did not test
resolutions beyond RLDM = 200 × 200: Current GPUs simply
do not have enough memory. Of course, one can use a lowerN but

53

Layered Depth Maps Reference HBAO

Time Image Image Image Time

d
m

a
x
=

8
0
cm

GTX 480
Clear

Construction
AO

36.68 ms
0.5445 ms
18.61 ms
10.33 ms

15.38 ms

8.116 ms

GTX 780 Ti
Clear

Construction
AO

14.43 ms
0.2518 ms
5.810 ms
5.913 ms

5.319 ms

2.837 ms

d
m

a
x
=

1
6
0
cm

GTX 480
Clear

Construction
AO

36.61 ms
0.5715 ms
18.63 ms
10.35 ms

15.87 ms

8.438 ms

GTX 780 Ti
Clear

Construction
AO

14.47 ms
0.2620 ms
5.842 ms
5.928 ms

5.770 ms

3.180 ms

d
m

a
x
=

3
2
0
cm

GTX 480
Clear

Construction
AO

36.71
0.5766 ms
18.62 ms
10.32 ms

16.13 ms

8.979 ms

GTX 780 Ti
Clear

Construction
AO

14.57 ms
0.2602 ms
5.872 ms
5.929 ms

6.046 ms

3.559 ms

d
m

a
x
=

6
4
0
cm

GTX 480
Clear

Construction
AO

36.72 ms
0.5626 ms
18.59 ms
10.35 ms

16.88 ms

9.624 ms

GTX 780 Ti
Clear

Construction
AO

14.66 ms
0.2623 ms
5.978 ms
5.938 ms

6.585 ms

3.661 ms

d
m

a
x
=

1
2
8
0
cm

GTX 480
Clear

Construction
AO

36.39 ms
0.5534 ms
18.52 ms
10.36 ms

16.77 ms

9.554 ms

GTX 780 Ti
Clear

Construction
AO

14.53 ms
0.2587 ms
5.866 ms
5.920 ms

5.764 ms

3.245 ms

Table 3: Scaling dmax. Constant parameters: NLDM = 16, RLDM = 200 × 200, NHBAO = 20, and SHBAO = 8. Constant metrics:
M = 25.24 MB.

54

Layered Depth Maps Reference HBAO

Time Image Image Image Time

N
=

3
2

M
=

5
0
.4
4
M
B

GTX 480
Clear

Construction
AO

70.27 ms
1.094 ms
39.93 ms
20.98 ms

189.3 ms

180.3 ms

GTX 780 Ti
Clear

Construction
AO

28.28 ms
0.5228 ms
13.06 ms
12.10 ms

59.40 ms

56.28 ms

N
=

6
4

M
=

1
0
0
.3
M
B

GTX 480
Clear

Construction
AO

126.2 ms
2.042 ms
74.47 ms
42.35 ms

369.6 ms

360.9 ms

GTX 780 Ti
Clear

Construction
AO

54.93 ms
1.088 ms
26.51 ms
24.78 ms

115.3 ms

112.5 ms

N
=

1
2
8

M
=

2
0
1
.0
M
B

GTX 480
Clear

Construction
AO

247.2 ms
4.096 ms
149.6 ms
86.3 ms

733.8 ms

722.9 ms

GTX 780 Ti
Clear

Construction
AO

108.7 ms
2.319 ms
52.94 ms
50.9 ms

227.8 ms

225.0 ms

N
=

2
5
6

M
=

4
0
2
.4
M
B

GTX 480
Clear

Construction
AO

490.6 ms
8.179 ms
300.2 ms
174.8 ms

1465 ms

1450 ms

GTX 780 Ti
Clear

Construction
AO

218.9 ms
4.883 ms
105.7 ms
105.4 ms

454.7 ms

451.9

N
=

5
1
2

M
=

8
0
5
.5
M
B

GTX 480
Clear

Construction
AO

1024 ms
16.42 ms
644.5 ms
354.5 ms

2904 ms

2894 ms

GTX 780 Ti
Clear

Construction
AO

512.4 ms
10.3 ms
279.8 ms
215.5 ms

903.6 ms

900.2 ms

Table 4: Scaling N . Constant parameters: RLDM = 200× 200, SHBAO = 128, and dmax = 1280 cm.

55

that comes at a loss in image quality.

In terms of correctness, we do see thatRLDM influences the results.
However, whereas largeN reduces banding artifacts, largeRLDM
seems to enhance the existing artifacts. This is especially noticeable
in the bands observed on the floor. Thus RLDM is best kept low
though this seems counter-intuitive. As such, RLDM can actually
be interpreted as a coarse blurring parameter. The banding artifacts
can only be improved through larger N . We had hoped that larger
RLDM would lead to more definition in the low-scale details (e.g.,
the plants). Unfortunately, this is not the case within the limits that
we can test RLDM in practice.

The hairball is seemingly unaffected by the choice ofRLDM. Note
that the layered depth map can be wrapped tighter around the hair-
ball (in contrast to the large sponza). This is why the small-scale
details of the individual hairs are actually captured. The sampling
density is already more than sufficient even for small RLDM. The
only thing that increases with RLDM is the render time.

Lastly, we note that the atomicAdd workaround was needed for the
GTX780Ti for the hairball scene. Therefore, the results are actually
slightly worse than they should be.

6.1.4 Normal Offset

Lastly, we would like to point out the effect the normal offset has on
the result (Figure 30). The default offset is 10which is also the value
used in all other renderings. Note the artifacts on thing surfaces such
as the curtains (Refer to Figure 29 for an explanation). The normal
offset mitigates these artifacts. However, if the offset is too large
(e.g., 20) then small-scale occlusion details are lost. This is a real
concern since our method already struggles with low-scale details.
Thus it is critical to find a good default for the scene in question.

6.2 Indirect Lighting

First, we scale N for the same reasons as before. Second, we test
different values of the global footprint scale, s. Third, we scale
RLDM. Fourth, we scale the resolution of the light rendering
(Rlight) and thus implicitly the number of primary photons. This is
done simultaneously with s in an attempt to find an optimal combi-
nation. Fifth, we show the effect of the various threshold parame-
ters. Sixth, we decouple the topological bias parameter (a) from s
and show a’s effect in isolation.

All scaling tests are done in the sponza using two different light
setups. The sub-timings are: Buffer clearing, glsldm construction,
photon tracing, and photon splatting.

6.2.1 Scaling N

We test N using the values 8, 32, 128, and 512 (Table 6). Like
in AO, low values of N leads to banding artifacts. As N in in-
creased, the image convincingly resembles the reference. Though
some differences are noticeable. Notably in the first floor scene
where our renders seem darker than the reference. This is because
we only trace the first bounce of indirect light. The path traced
reference traces multiple bounces (terminating light paths via Rus-
sian roulette). Therefore, it is expected that our solution is slightly
darker. Still the resemblance is visually convincing which confirms
that the first couple of light bounces are much more important than
later bounces.

Due to the low frequency of indirect light, banding artifacts are not
as big an issue as they where in AO. The worst artifacts are due to
the photon splats not being large enough and thus not properly cov-
ering the scene. Another problem is light leaking around corners.

This is especially noticeable on the box-shaped column in the first
floor render. This is due to the photon splat covering both sides of
the column. The topological bias reduces the effect but it is never
completely gone. In contrast, the path traced reference always has
clearly defined shadow edges. Similarly, light can also leak into
occluded areas. E.g., under the carpets in the first floor render. In
our approach, said carpets project a very soft shadow due to indi-
rect light on the wall. In the reference, the same shadow has a much
harder edge. The same artifact are even worse for the corresponding
carpets in the sponza ground floor render.

Topological bias can mitigate light creeping around corners. How-
ever, on flat surface, such as the wall behind the carpets, there is no
quick remedy. The only solution is to use a smaller scale, s, and
compensating by emitting more photons. Of course, this comes at
a performance cost.

Speaking of performance, our indirect lighting approach is only
barely real-time forN = 8. At this level, however, the artifacts are
too severe and the resulting image is not convincing. For N = 32,
the artifacts are tolerable but the frame time has been increased by
a factor of four. That is, the frame time is directly proportional to
N even for the sub-steps (just as with AO). The reasoning is the
same: All sub-steps are loops overN . We suggest that our indirect
lighting method is used for interactive and offline purposes due to
these performance characteristics.

Interestingly, neither construction or photon tracing are the domi-
nant factors in the frame time. Instead, it is the photon splatting
step which by far outweighs the other sub-timings. This is some-
what to be expected. As we mentioned previously, we attempted to
implement splatting directly a fragment shader. We found that this
approach was inefficient in practice. Therefore, we switched to use
the fixed-function pipeline’s additive blending mode. Still, the re-
sults show that splatting is the bottleneck. We hypothesize that the
problem is that many splats map to the same image location. That
is, multiple fragments compete to write to the same memory loca-
tions. As such, the pipeline is forced to serialize the writes which
significantly reduces performance.

The GTX 780 Ti is twice as fast as the GTX 480 on average. This
is to be expected. We already mentioned that the construction step
is sometimes three times as fast on the GTX 780 Ti. Unfortunately,
said step is not the main bottleneck. The splatting step is barely
twice as fast which compensates for the fast construction step in the
overall frame time. This also suggests GPU development has been
focused on optimizing shader execution (which helps construction)
but not the fixed function pipeline features such as additive blend-
ing (as used in splatting). Thus we do not expect to see significant
improvements on future hardware. Instead, we hope that RMW in
shader will be further improved so that single-pass fragment shader
splatting becomes feasible.

Lastly, we note that the memory requirements for the layered depth
maps,Mlists, clearly dominate. The photon buffer size,Mphotons,
is relatively small (under 100 MB) even for large N .

6.2.2 Scaling s

Recall that s controls the size of the photon differentials. Also, the
topological bias (a) is bound to s. We test s using the values 200,
400, 800, and 1600 (Table 7). It is clear, that s has a big impact on
both image quality and performance. For small s, the photons can
be made out individually as splotches of light. E.g., the faded red
splotches on the ground floor. For large s, the solution convincingly
resembles the reference image. Though, as noted before, light may
creep into places where it shouldn’t because of the large splat size.
Ideally, N should be much larger while s should be small. E.g.,

56

RLDM = 50× 50 RLDM = 100×100 RLDM = 150×150 RLDM = 200×200 Reference

793.2 ms
5.728 ms
446.4 ms
332 ms

810.9 ms
6.621 ms
459.3 ms
335.7 ms

875.4 ms
10.71 ms
507.3 ms
349.6 ms

983.9 ms
16.41 ms
604.3 ms
354.4 ms

GTX 480
Clear

Construction
AO

373.0 ms
2.324 ms
176.2 ms
191.5 ms

386.0 ms
3.613 ms
180.7 ms
198.0 ms

440.1 ms
6.490 ms
217.6 ms
209.3 ms

454.8 ms
10.14 ms
228.4 ms
213.5 ms

GTX 780 Ti
Clear

Construction
AO

204.1 MB 324.2 MB 525.1 MB 805.5 MB MLists
(a) Sponza ground floor.

RLDM = 50× 50 RLDM = 100×100 RLDM = 150×150 RLDM = 200×200 Reference

3561 ms
7.007 ms
2727 ms
806.7 ms

3826 ms
14.3 ms
2774 ms
1017 ms

N/A N/A GTX 480
Clear

Construction
AO

1174 ms
3.139 ms
738.7 ms
425.7 ms

1812 ms
8.651 ms
1286 ms
511.4 ms

2768 ms
17.66 ms
2111 ms
632.9 ms

4439 ms
30.14 ms
3543 ms
859.3 ms

GTX 780 Ti*
Clear

Construction
AO

295.5 MB 690.2 MB 1348 MB 2269 MB MLists
(b) Hairball.

Table 5: Scaling RLDM. Constant parameters: N = 512.

(a) Offset scale 0 (no offset). (b) Offset scale 1. (c) Offset scale 10 (default). (d) Offset scale 20.

Figure 30: Scaling the normal offset. Constant parameters: N = 512, RLDM = 200× 200, and dmax = 200 cm.

57

N = 8 N = 32 N = 128 N = 512 Reference

81.88 ms
0.338 ms
9.395 ms
0.5093 ms
62.81 ms

328.3 ms
1.068 ms
39.14 ms
1.338 ms
277.2 ms

1237 ms
4.229 ms
156.8 ms
5.21 ms
1059 ms

4919 ms
16.53 ms
643.1 ms
19.84 ms
4224 ms

GTX 480
Clear

Construction
Tracing
Splatting

47.60 ms
0.2427 ms
3.879 ms
1.100 ms
32.76 ms

166.1 ms
0.5704 ms
15.34 ms
4.037 ms
136.5 ms

618.1 ms
2.431 ms
72.17 ms
15.19 ms
516.9 ms

2394 ms
10.25 ms
250.7 ms
59.79 ms
2062 ms

GTX 780 Ti
Clear

Construction
Tracing
Splatting

12.84 MB 50.44 MB 201.0 MB 805.5 MB Mlists
1.175 MB 5.344 MB 20.97 MB 84.49 MB Mphotons

(a) Sponza ground floor.

68.22 ms
0.3561 ms
10.31 ms
0.6216 ms
45.23 ms

220.2 ms
1.120 ms
41.81 ms
1.59 ms
163.4 ms

848.5 ms
4.125 ms
158.6 ms
5.661 ms
668.2 ms

3317 ms
16.43 ms
649.4 ms
22.47 ms
2616 ms

GTX 480
Clear

Construction
Tracing
Splatting

33.37 ms
0.1708 ms
3.648 ms
0.7508 ms
25.48 ms

113.1 ms
0.5599 ms
14.60 ms
2.435 ms
92.22 ms

432.8 ms
2.308 ms
58.95 ms
8.974 ms
359.1 ms

1732 ms
10.25 ms
243.8 ms
38.9 ms
1434 ms

GTX 780 Ti
Clear

Construction
Tracing
Splatting

12.84 MB 50.44 MB 201.0 MB 805.5 MB Mlists
0.6411 MB 2.653 MB 10.31 MB 42.29 MB Mphotons

(b) Sponza first floor.

Table 6: Scaling N . Constant parameters: RLDM = 200× 200 and s = a = 2000.

58

many photons with a small footprint. However, this configuration
is not performant.

s is also shown to have a direct impact on performance. Specifi-
cally, the splatting time more than triples every time s is doubled.
This makes good sense, since s is used to scale the positional dif-
ferential. As such, the splat quad’s area (Aquad) should quadruple
when s is doubled

Aquad = ∥sDux× sDvx∥ = s2 ∥Dux×Dvx∥

Fortunately, we do not quite observe quadrupled splatting time.
This can be due to caching effects. The trend, however, is towards
quadratic as s is increased. We hypothesize that the frame splatting
will scale quadratically for larger s (when the cache is effectively
defeated). When s is low, splatting is fast and construction becomes
the bottleneck instead. Thus scaling down N accordingly is seem-
ingly a good option. As stated earlier, however, photon splotches
are visually disturbing for small s. Thus scaling N down will only
worsen the image quality.

In this case, the timings on both GPUs lead to the same conclusions.
We did not note any significant differences. This further supports
that the fixed-function pipeline including additive blending (as used
in splatting) has not been the focus of recent development. Note
that s only affects the splatting time and not the other sub-timings
as expected. Similarly, the memory use is constant throughout this
test.

6.2.3 Scaling RLDM

The resolution of each layered depth map (RLDM) is scaled to see
the response in image quality and performance. We testRLDM us-
ing the values 50 × 50, 100 × 100, 150 × 150, and 200 × 200.
As with AO, the result are counter-intuitive. Seemingly, increas-
ing RLDM has a positive effect on performance. This can be ex-
plained by observing the photon buffers memory use. The larger
RLDM, the smaller Mphotons. That is, fewer photons are stored
for large layered depth map resolutions. Splatting is the main bot-
tleneck so smallerMphotons implies fewer photons to splat and in
turn improved performance. These results are consistent across both
test setups and GPUs. We hypothesize that larger RLDM implies
more fine-grained photon culling which in turn results in fewer pho-
tons overall. The absolute difference inMphotons is actually small.
Since splatting is slow, however, even a small difference in the num-
ber of photons can bee directly observed in the overall frame time.
In fact, the construction time actually increases with RLDM but
the reduced splatting time greatly compensates for this. Again, this
confirms that splatting is the main bottleneck.

For both GPUs, the optimal value for RLDM seems to be around
150 × 150. This is clearly the case in the first floor scene. For the
ground floor, values beyond 150 × 150 has less of an impact on
performance (in contrast to smaller values). This finding may vary
from scene to scene.

In terms of image quality (and correctness), RLDM has no signif-
icant impact. This is in line with our earlier findings modulo the
banding artifacts (which are not a real problem for indirect light-
ing).

6.2.4 Scaling Rlight and s = a

We scale the resolution of the light source used in photon tracing
(Rlight) which directly influences the number of primary photons
(and thus the number of photons overall). The default setting used
in the above tests is Rlight = 100 × 100. Recall that the number

of primary photons is actually ne,p = π
4
Rlight due to spot light

culling. Simultaneously, we scale s (and therefore a) to compen-
sate for the increase or decrease in the photon count. The purpose
is to empirically find an optimal combination of the two variables.
In the above tests, we generally used s = a = 2000 which was
conservative. Now we find the minimum value. The results are in
Table 9.

It is immediately clear that a smaller s can be used while retaining
much of the image quality. In fact, even whenRlight is smaller than
the default value (100×100), s can be set to 800 without much loss
in image quality. Still, the result is visiblymore splotchy though this
is hardly noticed due to texturing. More importantly, performance
is significantly improved for all configurations overall. Now, the
splatting time is no longer dominant for the majority of the tests.

As Rlight is increased, we see an increase inMphotons too as ex-
pected. While Mphotons is still a modest quantity, this small in-
crease combined with the constantly bigMlists was enough to de-
feat the GTX 480 in the most taxing test. Again, this is due to mem-
ory limits. Note that doubling Rlight does not imply that s can be
halved. On other words, a large number of additional photons are
needed to compensate for even a small decrease in s. We have at-
tempted to keep the image quality constant when tweaking s. The
relationship between the number of photons (and henceRlight) and
s is involved and not easily derived for complex scenes such as the
sponza. Therefore, the ideal combination of Rlight and s must be
found empirically. Note that N also influences the number of pho-
tons. We have kept N fixed to both simplify the test and in order
to ensure a good hemispherical approximation. That is, to avoid the
latter influencing the result.

Besides performance, smaller s also mitigates some of the light
creeping artifacts. Specifically, the indirect shadows (seen under
the circular carpets) are much more refined. This is closer to the
path traced reference. Still, the indirect shadows are a little too soft.
Only in the limit s → 0 will the indirect shadowing be perfect.

6.2.5 Footprint Threshold

The footprint threshold (Tfoot) is used to cull large photon foot-
prints. The default value is 0.5. This introduces additional bias to
the solution. The purpose of the footprint threshold is to reduce
the time used to splat photons. Specifically, the time wasted splat-
ting large photons with little contribution (due to the large footprint
area). The results are in Figure 31.

On the far right of Figure 31 is the ground truth with no photon
culling. On the far left, we use Tfoot = 0.1 which results in more
than half of the photons being culled (compare Mphotons to the
ground truth). Of course, splatting performance is significantly im-
proved (almost by a factor of four) but the culling is too severe.
Almost no indirect lighting is present in the resulting image. Us-
ing a conservative Tfoot = 5.0 only culls 0.38 % of the photons.
Correspondingly, performance is improved by 2.0 %. The default
setting of Tfoot = 0.5 is our chosen middle ground. Only 5.4 % of
the photons are culled whereas the performance is improved by 20
%.

Since splatting is a large factor in the overall frame time, we feel that
it is necessary to trade performance for bias via Tfoot. For physical
correctness, this step should be omitted.

6.2.6 Depth Culling Threshold

Recall that photons are also culled when projected into the users
view. In this process a depth threshold is used because the depth

59

s = a = 200 s = a = 400 s = a = 800 s = a = 1600 Reference

710.9 ms
16.42 ms
602.4 ms
19.8 ms
62.7 ms

901.3 ms
16.46 ms
643.1 ms
19.48 ms
210.9 ms

1475 ms
16.55 ms
686.6 ms
19.49 ms
740.8 ms

3337 ms
16.46 ms
602.3 ms
19.58 ms
2689 ms

GTX 480
Clear

Construction
Tracing
Splatting

369.2 ms
10.38 ms
255.0 ms
59.99 ms
32.05 ms

445.6 ms
10.24 ms
256.0 ms
60.41 ms
108.3 ms

716.4 ms
10.25 ms
253.0 ms
60.93 ms
381.1 ms

1622 ms
10.14 ms
197.7 ms
60.06 ms
1350 ms

GTX 780 Ti
Clear

Construction
Tracing
Splatting

(a) Sponza ground floor.

s = a = 200 s = a = 400 s = a = 800 s = a = 1600 Reference

690.4 ms
16.43 ms
605.7 ms
22.41 ms
35.72 ms

774.8 ms
16.46 ms
604.7 ms
22.39 ms
121.0 ms

1097 ms
16.47 ms
603.8 ms
22.41 ms
443.6 ms

2335 ms
16.41 ms
603.6 ms
22.43 ms
1682 ms

GTX 480
Clear

Construction
Tracing
Splatting

308.9 ms
10.22 ms
240.9 ms
36.63 ms
17.45 ms

352.4 ms
10.17 ms
240.9 ms
36.02 ms
61.66 ms

549.8 ms
10.38 ms
250.0 ms
35.80 ms
249.9 ms

1221 ms
10.24 ms
231.8 ms
37.46 ms
937.6 ms

GTX 780 Ti
Clear

Construction
Tracing
Splatting

(b) Sponza first floor.

Table 7: Scaling s and a. N = 512 and RLDM = 200× 200.

(a) Threshold 0.1. Splatting
takes 1026 ms and Mphotons =

43.97MB.

(b) Threshold 0.5. Splatting
takes 4186 ms and Mphotons =

84.49MB.

(c) Threshold 5.0. Splatting
takes 5111 ms and Mphotons =

88.99MB.

(d) No threshold. Splatting takes
5214 ms and Mphotons =

89.39MB.

Figure 31: Scaling the footprint threshold. Constant parameters: N = 512, RLDM = 200× 200, and s = a = 2000.

60

RLDM = 50× 50 RLDM = 100×100 RLDM = 150×150 RLDM = 200×200 Reference

7058 ms
5.657 ms
417.6 ms
16.27 ms
5607 ms

6354 ms
6.8 ms
474.2 ms
17.7 ms
4836 ms

5056 ms
10.70 ms
508.5 ms
19.36 ms
4507 ms

4892 ms
16.51 ms
650.7 ms
19.55 ms
4194 ms

GTX 480
Clear

Construction
Tracing
Splatting

3027 ms
2.099 ms
153.2 ms
51.38 ms
2816 ms

2606 ms
3.607 ms
149.9 ms
55.25 ms
2392 ms

2458 ms
6.362 ms
176.6 ms
60.97 ms
2210 ms

2413 ms
10.35 ms
255.3 ms
59.34 ms
2078 ms

GTX 780 Ti
Clear

Construction
Tracing
Splatting

204.1 MB 324.2 MB 525.1 MB 805.5 MB Mlists
99.15 MB 92.11 MB 90.37 MB 84.49 MB Mphotons

(a) Sponza ground floor.

RLDM = 50× 50 RLDM = 100×100 RLDM = 150×150 RLDM = 200×200 Reference

3725 ms
5.678 ms
422.2 ms
10.25 ms
3267 ms

3355 ms
6.727 ms
445.4 ms
19.80 ms
2872 ms

3264 ms
10.7 ms
508.7 ms
21.49 ms
2712 ms

3304 ms
16.51 ms
649.7 ms
22.56 ms
2603 ms

GTX 480
Clear

Construction
Tracing
Splatting

1900 ms
2.197 ms
235.7 ms
31.64 ms
1620 ms

1738 ms
3.679 ms
239.0 ms
34.39 ms
1457 ms

1692 ms
6.414 ms
211.2 ms
36.29 ms
1434 ms

1716 ms
10.17 ms
240.1 ms
36.00 ms
1425 ms

GTX 780 Ti
Clear

Construction
Tracing
Splatting

204.1 MB 324.2 MB 525.1 MB 805.5 MB Mlists
46.35 MB 43.62 MB 42.84 MB 42.29 MB Mphotons

(b) Sponza first floor.

Table 8: Scaling RLDM. Constant parameters: N = 512 and s = a = 2000.

61

Rlight = 50× 50

s = a = 800

Rlight = 100× 100

s = a = 600

Rlight = 150× 150

s = a = 500

Rlight = 200× 200

s = a = 400

Reference

869.2 ms
16.46 ms
642.6 ms
12.45 ms
186.3 ms

1136 ms
16.55 ms
649.4 ms
19.73 ms
438.8 ms

1419 ms
16.44 ms
644.2 ms
34.29 ms
711.4 ms

N/A GTX 480
Clear

Construction
Tracing
Splatting

350.0 ms
10.24 ms
217.9 ms
20.17 ms
97.66 ms

556.2 ms
10.28 ms
249.5 ms
60.31 ms
225 ms

766.4 ms
10.29 ms
255.4 ms
119.5 ms
370.4 ms

861.7 ms
10.15 ms
215.5 ms
191.0 ms
441.2 ms

GTX 780 Ti
Clear

Construction
Tracing
Splatting

805.5 MB 805.5 MB 805.5 MB 805.5 MB MLists
21.31 MB 84.49 MB 190.4 MB 338.3 MB MPhotons

(a) Sponza ground floor.

Rlight = 50× 50

s = a = 800

Rlight = 100× 100

s = a = 600

Rlight = 150× 150

s = a = 500

Rlight = 200× 200

s = a = 400

Reference

828.4 ms
16.46 ms
666.4 ms
13.78 ms
114.2 ms

920.8 ms
16.38 ms
613.7 ms
22.38 ms
257.9 ms

1126 ms
16.47 ms
651.3 ms
34.84 ms
411.2 ms

1178 ms
16.45 ms
616.3 ms
53.39 ms
482.0 ms

GTX 480
Clear

Construction
Tracing
Splatting

329.8 ms
10.18 ms
240.2 ms
14.30 ms
61.24 ms

507.0 ms
10.30 ms
311.5 ms
36.05 ms
138.1 ms

543.7 ms
10.24 ms
239.9 ms
73.17 ms
216.7 ms

614.1 ms
10.16 ms
246.8 ms
107.1 ms
245.6 ms

GTX 780 Ti
Clear

Construction
Tracing
Splatting

204.1 MB 324.2 MB 525.1 MB 805.5 MB MLists
10.73 MB 42.59 MB 95.73 MB 169.7 MB MPhotons

(b) Sponza first floor.

Table 9: Scaling Rlight and s = a. Constant parameters: N = 512 and RLDM = 200× 200.

62

comparison has finite precision. The default is 0.1. The results are
in Figure 32. The visual impact of the depth culling threshold is not
directly noticeable. It can, however, be measured in the number of
stored photons,Mphotons. We conclude that finite precision is not
actually a real concern in this case.

6.2.7 Scaling a

The topological bias is controlled via a. Previously, a was directly
coupled to s. Now, we break this coupling and show the individual
effect of a (Figure 33). The most apparent property is that large a
is, the darker the scene becomes. This is because large a implies
that light cannot creep around corners which results in less light
overall. Of course, the intended effect of a is to just reduce this
light creeping (without dimming the result). The problem is that the
light, which is culled, is not compensated for. In theory, a should be
removed altogether for physical correctness. However, a is needed
in practice to ensure that the indirect light is not too smeared out.

6.3 Impact of Workarounds

We test the impact of the atomicAdd workaround. The results
are in Table 10. As noted earlier, an asterisk (*) denotes that the
workaround has been used. From looking at the table, it is clear that
the workaround has a significant impact. Performance is reduced by
around 15–20 %. Fortunately, only one of our tests was affected by
this. We hope that future drivers will fix this issue. For now, we
just note that some configurations may not perform optimally due
to this issue.

6.4 Combination

Lastly, we show that AO can be combined with indirect lighting.
The idea is to weigh the environment light by the AO factor (Sec-
tion 4.3.3) and combine this with the direct and indirect light of the
spot light (Figure 34). The environment light gives a blue tint to the
scene due to the illumination from the sky. Note that the environ-
ment light is only present in open areas whereas the indirect spot
light traces into the corridors.

In this combination, the time spent on constructing layered depth
maps is amortized by the tracing of environment light and indirect
light. That is, the layered depthmaps are constructed once per frame
but can be used by both methods. This also shows that our auxiliary
data structure based on layered depth maps is a multipurpose scene
representation. See Section 7.4 for other uses of layered depthmaps.

63

(a) Threshold 0.0. Mphotons = 83.95MB. (b) Threshold 0.1 (default). Mphotons =

84.49MB.
(c) Threshold 1.0. Mphotons = 89.08MB

Figure 32: Scaling the depth culling threshold. Constant parameters: N = 512, RLDM = 200× 200, and s = a = 2000.

(a) a = 200. (b) a = 400. (c) a = 800. (d) a = 1600. (e) a = 3200.

Figure 33: Scaling a. Constant parameters: N = 512, RLDM = 200× 200, and s = 2000.

N = 8 N = 32 N = 128 N = 512

GTX 480 9.373 ms 37.07 ms 148.1 ms 603.5 ms

GTX 480* 11.48 ms 45.22 ms 181.1 ms 736.5 ms

GTX 780 Ti 3.061 ms 14.98 ms 61.81 ms 248.9 ms

GTX 780 Ti* 3.785 ms 17.50 ms 71.13 ms 288.6 ms

Table 10: Impact of the atomicAdd workaround on layered depth map construction. Scaling N for the sponza ground floor.

64

(a) Sponza ground floor. Rendered in 6879 ms.

(b) Sponza first floor. Rendered in 3764 ms.

Figure 34: Direct environment light, direct spot light, and indirect spot light. Max settings.

65

7 Discussion

First, our indirect lighting method is compared to other real-time
approaches. Second, we list possible extensions and improvements
to our method. Third, we suggest technical improvements for the
implementation. Fourth, we list other uses for layered depth maps.

7.1 Indirect Lighting Comparison

In this section, we compare our indirect lighting method to previ-
ous work. First, we compare our method to VPL-based approaches.
Second, we look at other layered depth map implementations.

7.1.1 Virtual Point Lights

Visibility One of the difficulties with real-time VPL methods is
to evaluate the visibility term efficiently. Imperfect shadowmaps is
one solution but it is only approximate. Our indirect lightingmethod
does not need to compute a visibility term since shadowing is im-
plicitly handled via the photon tracing. As noted in the results, how-
ever, the indirect shadows in our approach might be biased due to
light creeping around corners.

Bounces VPLs in general (not real-time generated) can easily
produce multi-bounce light paths. The difficult part is to combine
VPLs with a rasterization-based pipeline to get the benefits of both.

Real-time VPL methods such as reflective shadow maps are lim-
ited to one bounce of indirect light [Dachsbacher and Stamminger
2005]. Our method, as presented here, also has this limitation (see
Section 7.2.1 for a trivial multi-bounce extension). So-called im-
perfect reflective shadow maps lifts this limitation and can theoreti-
cally be used for an arbitrary number of light bounces. Performance
is reduced accordingly. As such, it would seem that current real-
time VPL methods are limited to a single bounce of indirect light
in practice. There is one exception: The VPL-path tracing hybrid
mentioned earlier [Tokuyoshi and Ogaki 2012b]. This method effi-
ciently produces LDDDE paths (and can be trivially extended to
more bounces).

Data Structure There are some key similarities between the re-
flective shadow map approach and our method. The reflective
shadow maps are all stored in a single large texture. This is similar
to how we store all link nodes in a single SSBO. Furthermore, each
reflective shadow map is of low resolution. The authors suggests to
use 128× 128–256× 256maps [Ritschel et al. 2008]. Our layered
depth map approach also uses a resolution in this range. Lastly, the
basic idea of rendering the scene from multiple view is also implied
in imperfect shadow maps.

BRDF In principle, any bidirectional reflectance distribution
function can be used with our method (Section 7.2.2). Though
the way we sample the hemisphere resembles Lambertian reflec-
tion the most. VPL-based methods assumes either diffuse or glossy
surfaces. In principle, VPLs can also be used to represent specu-
lar reflections but they are not particularly suited for this purpose
[Ritschel et al. 2008; Dachsbacher et al. 2014].

We have not tested other BRDFs besides the Lambertian. As such,
we can only hypothesize about our methods ability to handle other
reflection models. Still, it will be difficult to handle perfect specu-
lar reflections in our method since the outgoing directions are pre-
determined. Contrast this to conventional photon mapping which is
very apt at handling caustics.

Light Source VPLs in general can be generated from arbitrary
light sources. In real-time, however, reflective shadow maps must
be generated be rendering the scene light’s point of view. This is ex-
actly the same approach that we employ in thePhotonTracing step.
Thus both approaches are limited by the projection model (perspec-
tive, orthographic, etc.). In other words, both methods are limited
to point-based or directional light sources (see Section 7.2.3 for a
light source extension to our method). Such light sources are not
physically-based since they do not have an area. This is a key limi-
tation if physical correctness is a priority (for both methods).

Temporal Coherence In general, VPLs are generated using ran-
domly generated light paths [Dachsbacher et al. 2014]. As such,
these methods can have temporal flickering between frames due to
changes in the sampling. A large number of VPLs is needed for tem-
poral coherence which costs in terms of performance. The real-time
VPL-based methods inherit these properties. Our approach uses
deterministic sampling and as such has no problem with temporal
flickering. The downside to our approach is the banding artifacts.
As mentioned earlier, performance can be traded for fewer artifacts
by sampling additional directions. The same principle applies to
VPLs.

Quasi-random light paths can be used to generate more coherent
light paths for the VPLs. This can be used to trade banding artifacts
for noise. Moreover, to make the result temporally coherent. Note
that reflective shadow maps can also be implemented completely
deterministically [Dachsbacher and Stamminger 2005]. The prob-
lem is that deterministic screen-space sampling introduces banding
artifacts.

Bias The main source of bias in VPL-based methods is due to
bounding the G term. The stricter the bound, the dimmer the light-
ing. The exact same behaviour can be observed in our method with
the a parameter (though for different reasons). The bound on G is
intended to mitigate small lights clusters of great intensity. Such
clusters are not generated in our method.

Our method has another source of bias: The irradiance estimate.
The scale parameter, s, can used to control the extent of this bias.
Unfortunately, s, must be rather large in practice to cover the scene
adequately. The VPL-based methods do not have this problem.

In summary, both methods are biased. Said bias can be controlled
via parameters for both VPLs and our approach. E.g., via the bound
onG and s, respectively. Likewise, the image quality of both meth-
ods can be improved by increasing the sample count.

7.1.2 Other Layered Depth Map Methods

VPL-Path Tracing hybrid The VPL-path tracing hybrid
[Tokuyoshi and Ogaki 2012b] has many parallels to our approach.
One of the subtle differences is that they propose to use unsorted
lists (unsorted depth values sequences). This implies that each
depth values sequence must be searched linearly from start to end
in order to find an intersection. As such, our intersection querying
method should be faster because the search can be terminated
early (due to the Lp sequences being sorted). The more interesting
question is whether the time we spend pre-sorting the linked
lists is actually amortized by the faster intersection queries. That
is, it might be faster to use a more naive, unsorted construction
mechanism (as [Tokuyoshi and Ogaki 2012b] proposes) and then
search the lists in full length. Our results definitely back this claim:
List construction far outweighs photon tracing on average. Even
if this is indeed the case, it would only be a small optimization in
our use case. The photon splatting step is still a huge factor in the
overall frame time. Lastly, it should be noted that the PSPPSLL

66

were not documented in the literature at the time [Tokuyoshi and
Ogaki 2012b] proposed their method.

Being based on VPLs, this hybrid method inherits some of VPLs’
negative properties. Specifically, the bias due to bounding G. Fur-
thermore, that light sources must be point-based because the VPLs
are generated with reflective shadow maps.

An interesting idea brought up by the same authors is to use the
imperfect shadow map technique to reduce layered depth map con-
struction costs [Tokuyoshi and Ogaki 2012a]. It would be interest-
ing to see the practical effects (in terms of performance and image
quality) when applied to our method.

Ray-Marching We propose to always trace in the direction in
which the layered depth map is oriented. This requires a large
number of layered depth maps to cover the hemisphere adequately.
Other authors propose to ray-march through fewer layered depth
maps instead [Lischinski et al. 1998; Bürger et al. 2007; Niessner
et al. 2010; Hu et al. 2014]. In fact, this has been the dominant ap-
proach thus far. The most significant benefit to ray-marching is that
arbitrary directions can be used. This is why the ray-marching ap-
proach can be used to implement path tracing [Hu et al. 2014]. The
problem is that the intersection tests are more expensive because of
pixel crossings [Niessner et al. 2010]. Recall that [Hu et al. 2014]
proposed to use a coarse voxel grid to mitigate this issue. This re-
sults in a very performant implementation. Specifically, [Hu et al.
2014] renders the sponza with path tracing in 4030–5110 ms de-
pending on the view angle. Note that these measurements are very
close to our results. However, path tracing is of course an unbiased
method and as such produces more correct results. On the other
hand, said measurements are based on a progressive path tracer.
That is, they construct the layered depth maps once and re-use them
for subsequent images. If we did the same, our approach would
be significantly faster. Still, the splatting step would dominate the
frame time.

It is difficult to asses which of the two approaches (fixed-direction
or ray-marching) is most performant. From the timings, it seems
that both approaches are in the same order of magnitude. We can
only hypothesize about specific timings. In general, ray-marching
fewer layered depth maps seems to be a better approach when the
construction is the bottleneck and sampling is not. This is actually
true for our indirect lighting method. Therefore, it would be inter-
esting to test whether ray-marching would improve performance in
our case (modulo splatting).

7.2 Method Improvements

In this section, we will list extensions and improvements to our pro-
posed indirect lighting method. First, a multi-bounce extension is
proposed. Second, a method to implement caustics. Third, a gen-
eralization to arbitrary light sources. Fourth, we propose to ren-
der progressively. Lastly, we suggest an improvement to our AO
method.

7.2.1 Multi-bounce

Our method can be trivially extended to support multiple light
bounces. As it is now, we split the primary photon into multiple
secondary photons. The very same approach can be used to split
the secondary photons into tertiary photons and so on.

The first practical difficulty is to stop the recursion. We propose to
either fix the light bounces globally (like we did with one bounce)
or to use Russian roulette. The problem with the latter is that it
introduces temporal flickering. The second practical difficulty is

to control the splitting. A naive extension of our approach would
split photons exponentially based on the number of light bounces.
Alternatively, one can choose a subset of the sample directions for
the secondary bounces. This subset can then be reduced further for
the tertiary bounces and so on. This scheme can be used to balance
out the exponential growth. Another alternative is to choose sample
directions randomly. Again, we chose not to do so for temporal
coherence.

It should be noted that there is another implication with multiple
bounces. Currently, the light’s G-buffer contains all the needed in-
formation to split the primary photon into secondary photons. How-
ever, the secondary photons may leave the light’s view. For such
photons, the G-buffer cannot be queried for scene information. In-
stead, the layered depthmapsmust be augmented with the necessary
scene information (surface BRDF and normal). This significantly
increases the memory usage of the layered depth maps18. In our
tests, we observed that the current memory requirements were al-
ready borderline acceptable. Specifically, the GTX 480 simply did
not have enough memory for some configurations.

Assuming that the augmented layered depth maps fit in memory,
then the above approach can be used to trace an arbitrary number
of light bounces. Moreover, the tracing step itself is currently not
a bottleneck. Thus the additional tracing overhead can be easily
afforded. This is unlike other real-time multi-bounce approaches
such as imperfect reflective shadow maps. The latter requires the
scene to be rendered multiple times for secondary bounces which
is very costly. In our proposed approach, the number of bounces is
independent of the scene complexity.

Lastly, we note that the random direction approach could also be
directly applied to the AO method. Again, the same bias–variance
trade-off applies.

7.2.2 Non-Lambertian BRDFs

The problem with our current approach is that the outgoing direc-
tions are fixed. Therefore, perfect specular reflections are impossi-
ble. An approximate solution is to instead choose the outgoing di-
rection which is closest to the perfect specular reflection. For large
N , the difference would be negligible. The same approach can be
used to implement glossy reflections.

In principle, any BRDF can be approximated this way. Of course,
the quality of the result heavily depends on howwell the hemisphere
is sampled. That is, whether a truly representative direction can be
chosen. Assuming this is possible, then our auxiliary data structure
could in principle also be used to implement path tracing. Though
in this extreme, it is arguably more practical to use one of the afore-
mentioned ray-marching approaches.

7.2.3 Arbitrary Light Sources

Currently, photon emission is restricted to point light sources. This
is so that the photon differentials can be easily traced via basic ray
differential theory. Recall that ray differentials have been general-
ized to path differentials [Suykens and Willems 2009]. In turn, this
theory can be used to emit photon differentials from arbitrary light
sources [Frisvad et al. 2014]. Beyond the emission, the tracing it-
self is identical to tracing ray differentials. Therefore, the Photon
Tracing step can be replaced with a compute shader that emits and
traces photon differentials from arbitrary light sources. The Photon

18Diffuse reflectance can be encoded in two channels to reduce storage
requirements [Kluczek 2014]. Likewise, the normals can be encoded. Fur-
ther compaction specific to layered depth maps is also possible [Kerzner
et al. 2013].

67

Splatting step would not have to be changed. Note that this not only
enables area light sources such as disks and squares but also arbi-
trary geometry light sources. As mentioned earlier, the tracing step
is currently not a bottleneck. Therefore, a more complex compute
shader can easily be afforded.

7.2.4 Progressive Rendering

The scene can be rendered over multiple frames to improve visual
quality (inspired by [Hu et al. 2014]). This is mostly relevant for
interactive purposes. A simple approach is to randomly rotate the
layered depth maps each frame so that new directions are sampled.
The result is then averaged over several frames to produce a more
convincing image. This is similar to the approach used by many
path tracers. Of course, the random rotation would introduce noise
in the result and temporal coherence is lost.

7.2.5 Screen-space AO Hybrid

Recall that one of the problem with our AO method was the lack
of small-scale details. In contrast, such features are represented
will in HBAO. Symmetrically, HBAO fails to capture large-scale
details. Thus a combination of the two is an optimal solution. A
similar principle is actually suggested in one of the first treatments
of SSAO [Shanmugam and Arikan 2007]. HBAO is already a very
fast method and even more so if it’s limited to a small dmax. Thus
the combination of HBAO and our approach could be performant
in practice.

7.3 Implementation Improvements

In this section, we list improvements to the implementation. This
will mostly be a technical discussion. First, we discuss vendor spe-
cific hardware extensions. Second, we suggest a bucket scheme to
improve trace time. Third, we detail how memory use can be re-
duced.

7.3.1 Hardware Extensions

The implementations presented previously have not made use of
any vendor specific hardware extensions. In the following, we list
some of these extensions and how they can be used to improve the
implementation. Of course, using any of these would restrict the
implementation to a subset of GPUs.

Critical Sections in fragment shaders Recall the critical sec-
tion discussion in Section 3.2.17. All of the extensions which pro-
vide critical sections in fragment shaders are vendor specific. While
we believe that it is more performant to implement pre-sorting us-
ing fine-grained atomic operations, it would be interesting to see if a
simple critical section actually outperformed our efforts. Theoreti-
cally, it would be counter-intuitive. Practically, the critical sections
may have access to hardware features which we do not and thus ben-
efit from hidden performance. We can only hypothesize without an
actual implementation. Profiling is needed to find the answer.

Raster Ordered View The Nvidia GeForce GTX 980 comes with
a DirectX feature called raster ordered view [Nvidia 2014]. The de-
scription is vague but this feature is supposedly intended to pro-
duce OIT. It remains to be seen if this is a new feature or sim-
ply the DirectX equivalent of Nvidia’s critical section extension
(NV_fragment_shader_interlock) [Brown et al. 2014b]. If it is in-
deed a new feature, then it could potentially be used to construct
layered depth maps.

Viewport Multicast This Nvidia extension (nv_viewport_array2)
allows the scene to be rasterized to multiple viewports at a time
[Bolz et al. 2014a]. This feature could potentially be exploited to
construct multiple layered depth maps in a single pass. Currently,
each layered depth maps is constructed in its own pass with all the
overhead that ensues. By batching the construction, this overhead
can be mitigated.

Note that batching via the geometry shader is already possible
[Bürger et al. 2007]. The approach is equivalent to MRT for the
fragment shader but instead applied to the geometry shader.

Pointers The Nvidia-specific SSBO extension exposes direct ac-
cess to the underlying buffer via pointers [Brown 2012]. Semanti-
cally, this is equivalent to the standard array-like accessing scheme.
Still, it would be interesting to see if pointers performed better. E.g.,
due to compile-time optimizations or simply because of vendor spe-
cific optimizations of pointer indirection.

7.3.2 Buckets (Depth Ranges)

The Lp sequence can be split into buckets according to depth inter-
vals. I.e., by dividing the singly linked list into an array of smaller
singly linked lists. This could speed up tracing. First, the outer array
is traversed until the right bucket is found. Then, the singly linked
list in that bucket is traversed to find the exact intersection. This
approach is inspired by the bucket sort method [Liu et al. 2009b]
and depth ranges [Vasilakis and Fudos 2013]. Note that this is the
opposite of PPPSLL (which is a singly linked list of arrays).

7.3.3 Improving Memory Usage

In the current implementation, the list node structure (depth value
and next index) is also used to store the head indices. This has
been done to simplify the implementation. Thus a lot of memory
is wasted on storing a non-existent depth value next to each head
index. Ideally, the head indices should just be stored contiguously
next to each other.

7.4 Auxiliary Uses

In this section, we list some auxiliary uses of layered depth maps.
When the layered depth maps are used for multiple purposes, their
construction cost is amortized. Such auxiliary uses include:

• Metaballs. Metaball rendering can be accelerated using lay-
ered depth maps [Szécsi and Illés 2012].

• Constructive Solid Geometry. Presentations on OIT are of-
ten accompanied by how layered depth maps can be used to
render constructive solid geometry [Lefebvre et al. 2014].

• Linked Lists of Lights. Per-pixel linked lists of lights have
recently been proposed to speed up multi-light rendering [Ab-
dul 2014]. In principle, such a light list could be combined
with a layered depth maps from the user’s view.

• Molecular Surfaces. A combination of OIT and construc-
tive solid geometry to render molecular objects [Kauker et al.
2013].

• Dynamics. Like rendering, simulation of dynamics also re-
quires ray-tracing. E.g., rigid body simulation in a physics
engine.

This is be no means an exhaustive list. Please refer to [Vasilakis
and Fudos 2014] and [Knowles et al. 2014] for more suggestions.

68

8 Conclusion

We have presented two global illumination methods using an auxil-
iary data structure based on layered depth maps. Said data structure
lived up to the requirements which we defined in Section 3.3.2. In
short, the data structure can be used to query global scene infor-
mation in rasterization. Specifically, we presented a real-time AO
method and an interactive single-bounce indirect lighting method
which both convincingly resembles the path traced reference. More-
over, we presented a combination of the two methods to simulate
both direct and indirect lighting from a point source together with
environment lighting. The indirect lighting method is novel in the
way it handles the diffuse reflection of photon differentials. The
pre-sorted layered depth maps allows us to quickly find the first oc-
cluder in both directions with a novel trace algorithm. Lastly, our
comparative study of layered depth map (Section 3.2) can also be
used as a reference on OIT methods.

The indirect lighting method can be trivially extended to also store
the direct photons. The quality of the photon differentials makes
this a viable approach. Thus our work on indirect lighting could
potentially be extended to handle both direct and indirect lighting
in a unified approach. As mentioned earlier, the approach can also
be extended with multiple light bounces and arbitrary light sources.
There is also a lot of work to be done on non-Lambertian BRDFs.
This is definitely an interesting direction for future study.

The layered depth maps are constructed independently of one an-
other. In that sense, our auxiliary data structure is actually a col-
lection of individual data structures that each stores a scene repre-
sentation. Contrast this to, say, a voxel grid which stores a scene
representation in a single data structure. The problem with a collec-
tion of individual data structures is that scene information may be
duplicated. That is, the same surface point may be stored in multi-
ple layered depth maps. This wastes space. There has been research
on optimizing the data storage by sharing information between list
nodes [Kerzner et al. 2013]. It would be interesting to see if entire
list nodes could be shared between the layered depth maps in order
to reduce data duplication.

Another proposal for future work is to test other layered depth map
implementations. E.g., the l-buffer or HA-buffer. Unfortunately,
this process is complicated by driver issues as we experienced our-
selves. This makes the implementation process needlessly com-
plex. Furthermore, we found that it was seldom the construction
step which dominated layered depth map construction. Still, a prac-
tical study of layered depth map implementations would be useful
for future reference.

Lastly, we would like to point out that our real-time and interactive
methods can of course also be used in an offline context. We have
strived to stay physically correct and only introduced bias to gain
reasonable performance. The bias can be reduced by increasing the
sampling density. We envision that our layered depth map approach
can ultimately be used as a unified lighting solution.

69

Glossary
z-buffer 4, 5, 70, see depth map
z-value 4, 8, 10, see depth value

depth buffer 4, 12, 17, see depth map
depth map Map that contains per-pixel depth values. The depth

map is a special case of a layered depth map. 1, 3–6,
29, 30, 35, 42, 43, 48, 52, 53, see depth value & layered
depth map

depth value The distance from the viwer into the screen. Usu-
ally, the view is oriented so that the negative z-axis ex-
tends into the screen in EC. As such, the depth value is
the negated z-coordinate in EC. However, depth values
are not limited to EC and may also be extracted from
later coordinate spaces. E.g., CC, NDC, SC, etc. Con-
sequently, depth values are not necessarily linear. 2–10,
12, 13, 15–17, 19, 20, 24, 25, 29, 30, 34, 42, 43, 48, 66,
68, 70, 71

fragment lists 5, see layered depth map
fragment shader “Fragment shaders affect the processing of frag-

ments during rasterization.” as stated in the OpenGL 4.5
specification [Segal et al. 2014]. Note that a fragment
shader may be invokedmultiple times for the same pixel.
E.g., due to overlapping geometry. 2, 3, 13, 19–23, 35,
42, 46, 47, 56, 68, 70, see shader

framebuffer “The framebuffer consists of a set of pixels arranged
as a two-dimensional array. [...] each pixel in the frame-
buffer is simply a set of some number of bits.” as stated
in the OpenGL 4.5 specification [Segal et al. 2014]. 6,
7, 20, 25, 43, 46, 49, 50, 70

layered depth images 5, see layered depth map
layered depthmapMap that may contain multiple depth values per

pixel. 1–9, 13–17, 19, 22, 24, 25, 27, 29–32, 34–38, 42,
43, 45–47, 52–56, 59, 63, 64, 66–70, see depth value

layered fragment buffer 5, see layered depth map

multi-layer z-buffer 5, see layered depth map

shader “A shader specifies operations that are meant to occur on
data as it moves through different programmable stages
of the OpenGL processing pipeline, starting with ver-
tices specified by the application and ending with frag-
ments prior to being written to the framebuffer. The pro-
gramming language used for shaders is described in the
OpenGL Shading Language Specification.” as stated in
the OpenGL 4.5 specification [Segal et al. 2014]. 1, 2,
7, 9, 17, 19, 22, 24, 49, 56, 70

shader invocation The execution of a shader’s main function. A
vertex shader is invoked for every incoming vertex. A
geometry shader is invoked for every incoming primi-
tive. A fragment shader is invoked for every incoming
fragment. 7–9, 19, 20, 22, see shader& fragment shader

Acronyms
Computer Science

FIFO first-in, first-out. 6
RMW read-modify-write. 7, 9, 10, 13, 56

Coordinate Systems
CC clip coordinates. 50, 70
EC eye coordinates. 48, 70
FC filter coordinates. 41
NDC normalized device coordinates. 4, 16, 24, 40, 70
SC screen coordinates. 26, 70
TC texture coordinates. 47

WC world coordinates. 15, 16, 24, 26, 34, 40–42, 46, 48

Layered Depth Map Implementations
Z3 6–8, 10, 13, 14, 17
k+-buffer 13, 14, 17
k-buffer 7, 9, 13, 14, 17, 42
A-buffer anti-aliased, area-averaged, accumulation buffer. 5,

6, 9, 10, 12, 14, 17, 70
D-buffer dequeue buffer. 11, 12, 14
DF-buffer dynamic fragment buffer. 10–12, 14, 17
F-buffer fragment-stream buffer. 6, 9, 14, 17
HA-buffer hashed A-buffer. 12, 14, 17, 18, 24, 69
l-buffer layered buffer or list buffer. 10–12, 14, 17, 69
PPFLA per-pixel fixed-length arrays. 8, 11, 14, 17
PPPSLL paged per-pixel singly linked lists. 9, 14, 17, 68
PPSLL per-pixel singly linked lists. 9–12, 14, 17, 19–21, 24,

42, 43
PSPPFLA pre-sorted per-pixel fixed-length arrays. 8, 12–14,

17
PSPPSLL pre-sorted per-pixel singly linked lists. 12, 14, 17–

20, 23, 24, 43, 66
PSPPVLA pre-sorted per-pixel variable-length arrays. 12,

14, 17
R-buffer recirculating fragment buffer. 6, 9, 14, 17
S-buffer sparsity-aware buffer. 11, 12, 14, 17

OpenGL
GLSL OpenGL shading language. 9
MRT multiple render targets. 7, 68
RT render target. 6–8, 18
SSBO shader storage buffer object. 7–10, 12, 17, 19, 20, 24,

25, 46, 49, 50, 66, 68

Rendering
AO ambient obscurance. 1, 28–38, 42, 48, 52, 53, 56, 59, 63,

67–69
AO ambient occlusion. 1–3, 27, 28, 30, 52, 53
BRDF bidirectional reflectance distribution function. 38, 45,

46, 48, 50, 66, 67, 69
BSDF bidirectional scattering distribution function. 37
HBAO horizon-based ambient occlusion. 30, 35, 43, 52–55,

68, 76
OIT order-independent transparency. 5–7, 13, 15, 17, 31, 68,

69
PDF probability density function. 29, 32, 37
SSAO screen-space ambient occlusion. 3, 29–31, 53, 68
VPL virtual point light. 37, 38, 40, 42, 43, 66, 67

Symbols

Radiometry

fr bidirectional reflectance distribution function
[
sr−1]

27, 38, 66

fs bidirectional scattering distribution function
[
sr−1] 27

I radiant intensity
[
Wsr−1] 38

E irradiance
[
Wm−2] 39–41, 46, 49, 50, 66

L radiance
[
Wm−2 sr−1] 27, 33, 38–42, 49, 50

Φ radiant flux [W] 38, 39, 41, 42, 45–47, 49

Rendering

70

Lk
p sorted depth value sequence A sorted sequence of k as-

cending depth values belonging to pixel p. Note that k may
vary from pixel to pixel. See Section 3.1.2 for the formal def-
inition. 4–8, 10, 13, 71, see layered depth map

Lp sorted depth value sequence k may be omitted from Lk
p

to denote that the sequence is not of fixed length. 5, 6, 9, 10,
12, 15, 16, 24, 34, 42, 43, 52, 66, 68

71

References

Aൺඅඎඇൽ, F., ൺඇൽ Bඔඋൾඇඍඓൾඇ, A., 2013. A comparative study of
screen-space ambient occlusion methods. Technical University
of Denmark, Bachelor Thesis.

Aൻൽඎඅ, B., 2014. Real-time lighting via light linked list.

Aංඅൺ, T., Mංൾඍඍංඇൾඇ, V., ൺඇൽ Nඈඋൽඅඎඇൽ, P. 2003. Delay streams
for graphics hardware. In ACM SIGGRAPH 2003 Papers, ACM,
New York, NY, USA, SIGGRAPH ’03, 792–800.

Aൾඇංඇൾ-Mදඅඅൾඋ, T., Hൺංඇൾඌ, E., ൺඇൽ Hඈൿൿආൺඇ, N. 2008. Real-
time rendering 3rd edition. 1–27, 134–141.

Bൺൾඋ, M. J., 2015. Maths - transformations using quaternions.

Bൺඎൾඋ, F., Kඇඎඍඁ,M., ൺඇൽBൾඇൽൾඋ, J. 2013. Screen-space ambient
occlusion using a-buffer techniques. 140–147.

Bൺඏඈංඅ, L., ൺඇൽ Mඒൾඋඌ, K. 2011. Order independent transparency
with dual depth peeling.

Bൺඏඈංඅ, L., ൺඇൽ Sൺංඇඓ, M. 2009. Multi-layer dual-resolution
screen-space ambient occlusion. SIGGRAPH 2009: Talks, SIG-
GRAPH ’09, 45.

Bൺඏඈංඅ, L., Cൺඅඅൺඁൺඇ, S. P., Lൾൿඈඁඇ, A., Cඈආൻൺ, J. ൺ. L. D., ൺඇൽ
Sංඅඏൺ, C. T. 2007. Multi-fragment effects on the gpu using the
k-buffer. In Proceedings of the 2007 Symposium on Interactive
3D Graphics and Games, ACM, New York, NY, USA, I3D ’07,
97–104.

Bൺඏඈංඅ, L., Sൺංඇඓ, M., ൺඇൽ Dංආංඍඋඈඏ, R. 2008. Image-space
horizon-based ambient occlusion. Siggraph’08: Acm Siggraph
Talks 2008, Siggraph: Acm Siggraph Talks.

Bඈඅඓ, J., Bඋඈඐඇ, P., Dඈൽൽ, C., Kංඅൺඋൽ, M., ൺඇൽ Wൾඋඇൾඌඌ, E.,
2010. Nv_shader_buffer_load. Extension #379.

Bඈඅඓ, J., Bඋඈඐඇ, P., ൺඇൽ Hൾඒൾඋ, M., 2014. Nv_viewport_array2.
Extension #476.

Bඈඅඓ, J., Bඋඈඐඇ, P., Lංർඁඍൾඇൻൾඅඍ, B., Lංർൾൺ-Kൺඇൾ, B., Wൾඋ-
ඇൾඌඌ, E., Sൾඅඅൾඋඌ, G., Rඈඍඁ, G., Hൺൾආൾඅ, N., Bඈඎൽංൾඋ, P., ൺඇൽ
Dൺඇංൾඅඅ, P., 2014. Arb_shader_image_load_store. Extension
#115.

Bඋൾඍඈඇ, J., Bඋඈඐඇ, P., Wൾඋඇൾඌඌ, E., ൺඇൽ Kංඅൺඋൽ, M., 2014.
Nv_shader_thread_group. Extension #447.

Bඋඈඐඇ, P., Bඈඅඓ, J., Dൺඇංൾඅඅ, P., Rංർർංඈ, C., Sൾඅඅൾඋඌ, G., Mൾඋඋඒ,
B., ൺඇൽKൾඌඌൾඇංർඁ, J., 2014. Arb_shader_storage_buffer_object.
ARB Extension #137.

Bඋඈඐඇ, P., Bඈඅඓ, J., ൺඇൽ Hൾඒൾඋ, M., 2014.
Nv_fragment_shader_interlock. Not yet assigned an extension
number.

Bඋඈඐඇ, P., 2012. Nv_shader_buffer_store. Extension #390.

Bඳඋൾඋ, K., Hൾඋඍൾඅ, S., Kඋඳൾඋ, J., ൺඇൽ Wൾඌඍൾඋආൺඇඇ, R. 2007.
Gpu rendering of secondary effects. In Vision, Modeling and
Visualization 2007.

Cൺඅඅൺඁൺඇ, S., Iංඍඌ, M., Cඈආൻൺ, J., ൺඇൽ Sංඅඏൺ, C. 2005.
Hardware-assisted visibility sorting for unstructured volume ren-
dering. IEEE TRANSACTIONS ON VISUALIZATION AND
COMPUTER GRAPHICS 11, 3, 285–295.

Cൺඋඉൾඇඍൾඋ, L. 1984. The a-buffer, an antialiased hidden surface
method. Computers and Graphics 18, 3, 103–108.

Cൺඍආඎඅඅ, E. E. 1974. A subdivision algorithm for computer display
of curved surfaces.

Cඈඅඅඈආൻ, C., 2007. A tutorial on inverting 3 by
3 matrices with cross products. Available online:
http://www.emptyloop.com/technotes/.

Cඈආൻൺ, J. L. D., Tඈඋർඁൾඅඌൾඇ, R., Bൺඌඍඈඌ, R., ൺඇൽ Mൺඎඅൾ, M.
2012. Memory-efficient order-independent transparency with
dynamic fragment buffer. Brazilian Symposium of Computer
Graphic and Image Processing, 134–141.

Cඈඈ, R. L., ൺඇൽ Tඈඋඋൺඇർൾ, K. E. 1982. A reflectance model for
computer graphics. ACM Transactions on Graphics 1, 1, 7–24.

Cඋൺඌඌංඇ, C., Nൾඒඋൾඍ, F., Sൺංඇඓ, M., Gඋൾൾඇ, S., ൺඇൽ Eංඌൾආൺඇඇ, E.
2011. Interactive indirect illumination using voxel cone tracing.
Symposium on Interactive 3D Graphics, 207–207.

Cඋൺඌඌංඇ, C., 2010. Fast and accurate single-pass a-buffer using
opengl 4.0+.

Cඋൺඌඌංඇ, C., 2010. Opengl 4.0+ abuffer v2.0: Linked lists of frag-
ment pages.

Dൺർඁඌൻൺർඁൾඋ, C., ൺඇൽ Sඍൺආආංඇൾඋ, M. 2005. Reflective shadow
maps. Proceedings of the Symposium on Interactive 3dGraphics,
Proc Symp Interactive 3d Graphics, 203–208.

Dൺർඁඌൻൺർඁൾඋ, C., Kඋංඏൺඇൾ, J., Hൺඌൺඇ, M., Aඋൻඋൾൾ, A., Wൺඅඍൾඋ,
B., ൺඇൽ Nඈඏൺ, J. 2014. Scalable realistic rendering with many-
light methods. COMPUTERGRAPHICS FORUM33, 1, 88–104.

Dൺඏංൾඌ, L., 2014. Order-independent transparency approximation
with pixel synchronization (update 2014).

Dංආංඍඋඈඏ, R., Bൺඏඈංඅ, L., ൺඇൽ Sൺංඇඓ, M. 2008. Horizon-split am-
bient occlusion. In Proceedings of the 2008 symposium on In-
teractive 3D graphics and games, ACM, New York, NY, USA,
I3D ’08, 5:1–5:1.

Dඎඍඋඣ, P., Pඁංඅංඉඉൾ, B., ൺඇൽ Bൺඅൺ, K. 2006. Advanced Global
Illumination. Peters.

Eඇൽൾඋඍඈඇ, E., Sංඇඍඈඋඇ, E., Sඁංඋඅൾඒ, P., ൺඇൽ Lඎൾൻൾ, D. 2011.
Stochastic transparency. Ieee Transactions on Visualization and
Computer Graphics, Ieee Trans Visual Comput Graphics 17, 8,
1036–1047.

Eඏൾඋංඍඍ, C. 2001. Interactive order-independent transparency.

Fൺൻංൺඇඈඐඌං, B., ൺඇൽ Dංඇඅංൺඇൺ, J. 2009. Interactive global
photon mapping. COMPUTER GRAPHICS FORUM 28, 4,
1151–1159.

Fංඅංඈඇ, D., ൺඇൽ MർNൺඎඁඍඈඇ, R. 2008. Effects & techniques.
In ACM SIGGRAPH 2008 Games, ACM, New York, NY, USA,
SIGGRAPH ’08, 133–164.

Fඋංඌඏൺൽ, J. R., Sർඁඃඍඁ, L., Eඋඅൾൻൾඇ, K., ൺඇൽ Sඉඈඋඋංඇ, J. 2014.
Photon differential splatting for rendering caustics. Computer
Graphics Forum 33, 6, 252–263.

Fඋංඌඏൺൽ, J. R. 2012. Photon differentials: Adaptive anistropic den-
sity estimation in photon mapping. In State of the Art in Photon
Density Estimation, vol. Article 6.

Gඈඋൺඅ, C. M., Tඈඋඋൺඇർൾ, K. E., Gඋൾൾඇൻൾඋ, D. P., ൺඇൽ Bൺඍඍൺංඅൾ,
B. 1984. Modeling the interaction of light between diffuse sur-
faces. Computer Graphics (ACM) 18, 3, 213–222.

Gඈඋඍඅൾඋ, S. J., Cඈඁൾඇ, M. F., ൺඇൽ Hൾ, L.-ඐ. 1997. Rendering
layered depth images.

72

Gඈඏංඇൽൺඋൺඃඎ, N. K., Lංඇ, M. C., ൺඇൽ Mൺඇඈർඁൺ, D. 2004. Vis-
sort: Fast visibility ordering of 3-d geometric primitives. Tech.
rep., University of North Carolina at Chapel Hill.

Gඋൺඃൾඐඌං, S., Fඈඅൾඒ, T., Iඇඌඈ, B., Jൺඇർඓൺ, T.,
Sൺඅඏං, M., Sൾංඅൾඋ, L., ൺඇൽ Pඈඇංൾർං, T., 2013.
Gl_intel_fragment_shader_ordering. OpenGL Extension
#441.

Gඋඎൾඇ, H., ൺඇൽ Tඁංൻංൾඋඈඓ, N. 2010. Oit and indirect illumina-
tion using dx11 linked lists. In Proceedings of the 2010 Game
Developers Conference.

Hൺർඁංඌඎൺ, T. 2005. High-quality global illumination rendering
using rasterization. In GPU Gems 2, M. Pharr, Ed. Addison-
Wesley, 615–633.

Hൺඋඋංඌ, T. L. 2001. A pragmatic implementation of non-blocking
linked-lists. In Lecture Notes in Computer Science, Springer-
Verlag, 300–314.

Hൾർൻൾඋඍ, P. S. 1990. Adaptive radiosity textures for bidirectional
ray tracing. Computer Graphics 24, 4, 145–154.

Hൾඋආൾඌ, J., Hൾඇඋංർඁ, N., Gඋඈඌർඁ, T., ൺඇൽ Mඎൾඅඅൾඋ, S. 2010.
Global illumination using parallel global ray-bundles. Vmv 2010
- Vision, Modeling and Visualization, Vmv - Vis., Model. Vis,
65–72.

Hඈඅൻൾඋඍ, D., 2011. Saying g�oodbyeẗo shadow acne.

Hඈඎඌඍඈඇ, M., Pඋൾൾඍඁൺආ, A. J., ൺඇൽ Sൾൺඅ, M. 2005. Stanford
tech report- cstr 2005-05 (2005), pp. 1–6 a hardware f-buffer im-
plementation.

Hඎ, W., Hඎൺඇ, Y., Zඁൺඇ, F., Yඎൺඇ, G., ൺඇൽ Lං, W. 2014.
Ray tracing via gpu rasterization. VISUAL COMPUTER 30, 6-8,
697–706.

Iൾඁඒ, H. 1999. Tracing ray differentials. SIGGRAPH 99 CON-
FERENCE PROCEEDINGS, 179–186.

Jൺඋඈඌඓ, W., Jൾඇඌൾඇ, H. W., ൺඇൽ Dඈඇඇൾඋ, C. 2008. Advanced
global illumination using photon mapping. In ACM SIGGRAPH
2008 Classes, ACM, New York, NY, USA, SIGGRAPH ’08,
2:1–2:112.

JൾGX, 2014. How to rotate a vertex by a quaternion in glsl.

Jൾඇඌൾඇ, H. W., ൺඇൽ Cඁඋංඌඍൾඇඌൾඇ, N. J. 1995. Photon maps in bidi-
rectional monte carlo ray tracing of complex objects. Computers
and Graphics 19, 2, 215–224.

Jඈඎඉඉං, N. P., ൺඇൽ Cඁൺඇ, C.-F. 1999. Z3: an economical hardware
technique for high-quality antialiasing and transparency. SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
85–93.

Kൺඃංඒൺ, J. T. 1986. The rendering equation. SIGGRAPH Comput.
Graph. 20, 4 (aug), 143–150.

Kൺඌඒൺඇ, N., Sർඁඎඅඓ, N., ൺඇൽ Sඈඎඌൺ, T., 2011. Secrets of cryengine
3 graphics technology. Slideshow accompanying a presentation.

Kൺඎൾඋ, D., Kඋඈඇൾ, M., Pൺඇൺංඈඍංൽංඌ, A., Rൾංඇൺ, G., ൺඇൽ Eඋඍඅ,
T. 2013. Rendering molecular surfaces using order-independent
transparency. Eurographics Workshop on Parallel Graphics and
Visualization, 33–40.

Kൾඅඅൾඋ, A. 1997. Instant radiosity. Proceedings of the Acm Sig-
graph Conference on Computer Graphics, Proc Acm Siggraph
Conf Computer Graph, 49–54.

Kൾඋඓඇൾඋ, E., Wඒආൺඇ, C., Bඎඍඅൾඋ, L., ൺඇൽ Gඋංൻൻඅൾ, C. 2013. To-
ward efficient and accurate order-independent transparency. Acm
Siggraph 2013 Posters, Siggraph 2013, Acm Siggraph Posters,
Siggraph.

Kൾඌඌൾඇංർඁ, J., LඎඇൺඋG, Bൺඅൽඐංඇ, D., ൺඇൽ Rඈඌඍ, R., 2014. The
opengl shading language (version 4.5).

Kඅඎർඓൾ, K. 2014. Reducing texture memory usage by 2-channel
color encoding. InGPUPro 5: Advanced Rendering Techniques,
W. Engel, Ed. CRC Press, 25–32.

Kඇඈඐඅൾඌ, P., Lൾൺർඁ, G., ൺඇൽ Zൺආൻൾඍඍൺ, F. 2012. Efficient layered
fragment buffer techniques. In OpenGL Insights, CRC Press,
P. Cozzi and C. Riccio, Eds., 279–292.

Kඇඈඐඅൾඌ, P., Lൾൺർඁ, G., ൺඇൽ Zൺආൻൾඍඍൺ, F. 2013. Backwards
Memory Allocation and Improved OIT. In Proceedings of Pa-
cific Graphics 2013 (short papers), 59–64.

Kඇඈඐඅൾඌ, P., Lൾൺർඁ, G., ൺඇൽ Zൺආൻൾඍඍൺ, F. 2014. Fast sorting
for exact oit of complex scenes. VISUAL COMPUTER 30, 6-8,
603–613.

Kඋඳൾඋ, J., Bඳඋൾඋ, K., ൺඇൽ Wൾඌඍൾඋආൺඇඇ, R. 2006. Interactive
screen-space accurate photon tracing on gpus. In Proceedings
of the 17th Eurographics Conference on Rendering Techniques,
Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, EGSR ’06, 319–329.

Kඎൻංඌർඁ, C. 2014. Order independent transparency in opengl 4.x.
In Proceedings of the 2014 GPU Technology Conference.

Lൺඇൽංඌ, H. 2002. Production-Ready Global Illumination. In Sig-
graph Course Notes, vol. 16.

Lൾൾ, J.-A., ൺඇൽ Kංආ, L.-S. 2000. Single-pass full-screen hardware
accelerated antialiasing. Proceedings of the SIGGRAPH/Euro-
graphics Workshop on Graphics Hardware, 67–75.

Lൾൿൾൻඏඋൾ, S., Hඈඋඇඎඌ, S., ൺඇൽ Lൺඌඋൺආ, A. 2013. Ha-buffer: Co-
herent hashing for single-pass a-buffer. Rapport de recherche
RR-8282, INRIA, Apr.

Lൾൿൾൻඏඋൾ, S., Hඈඋඇඎඌ, S., ൺඇൽ Lൺඌඋൺආ, A. 2014. Per-pixel lists
for single pass a-buffer. In GPU Pro 5: Advanced Rendering
Techniques, W. Engel, Ed. CRC Press, 3–23.

Lൾඈඉൺඋൽං, P. 2006. A partition of the unit sphere into regions of
equal area and small diameter. ELECTRONIC TRANSACTIONS
ON NUMERICAL ANALYSIS 25, 309–327.

Lංർൾൺ-Kൺඇൾ, B., Lංർඁඍൾඇൻൾඅඍ, B., Dඈൽൽ, C., Wൾඋඇൾඌඌ, E., Sൾඅඅ-
ൾඋඌ, G., Rඈඍඁ, G., Bඈඅඓ, J., Hൺൾආൾඅ, N., Bඋඈඐඇ, P., Bඈඎൽංൾඋ,
P., ൺඇൽ Dൺඇංൾඅඅ, P., 2012. Arb_shader_atomic_counters. ARB
Extension #114.

Lංඉඈඐඌං, J. K. 2010. Multi-layered framebuffer condensation: The
l-buffer concept. Computer Vision And Graphics, Part 2 6375,
89–97.

Lංඉඈඐඌං, J. K. 2013. D-buffer: irregular image data storage made
practical. OPTO-ELECTRONICS REVIEW 21, 1, 103–125.

Lංඌർඁංඇඌං, D., Rൺඉඉඈඉඈඋඍ, A., Dඋൾඍඍൺංඌ, G., ൺඇൽ Mൺඑ, N. 1998.
Image-based rendering for non-diffuse synthetic scenes.

Lංඎ, B., Wൾං, L.-Y., ൺඇൽ Xඎ, Y.-Q. 2006. Multi-layer depth peel-
ing via fragment sort. Tech. Rep. MSR-TR-2006-81, Microsoft
Research, June.

Lංඎ, F., Hඎൺඇ, M.-C., Lංඎ, X.-H., ൺඇൽ Wඎ, E.-H. 2009. Single
pass depth peeling via cuda rasterizer. Siggraph 2009: Talks,
Siggraph ’09, Siggraph : Talks, Siggraph.

73

Lංඎ, F., Hඎൺඇ, M.-C., Lංඎ, X.-H., Wඎ, E.-H., ൺඇൽ Wඎ, E.-H.
2009. Efficient depth peeling via bucket sort. Proceedings
of the SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, 51–57.

Lංඎ, F., Hඎൺඇ, M.-C., Lංඎ, X.-H., ൺඇൽWඎ, E.-H. 2010. Freepipe:
A programmable parallel rendering architecture for efficient
multi-fragment effects. Proceedings of I3D 2010: the 2010 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games,
75–82.

Lංඎ, F., Lංඎ, F., Lංඎ, X., Sඈඇ, Y., ൺඇൽ Xඎ, X. 2013. Multi-layer
screen-space ambient occlusion using hybrid sampling. Proceed-
ings - Vrcai 2013: 12th Acm Siggraph International Conference
on Virtual-reality Continuum and Its Applications in Industry,
Proc. - Vrcai: Acm Siggraph Int. Conf. Virtual-real. Continuum
Its Appl. Ind, 71–75.

Lඈඈඌ, B. J., ൺඇൽ Sඅඈൺඇ, P.-P. 2010. Volumetric obscurance. In
Proceedings of the 2010 ACM SIGGRAPH symposium on Inter-
active 3D Graphics and Games, ACM, New York, NY, USA,
I3D ’10, 151–156.

Mൺආආൾඇ, A. 1989. Transparency and antialiasing algorithms im-
plementedwith the virtual pixel maps technique. IEEEComputer
Graphics And Applications 9, 4, 43–55.

Mൺඋ, W., ൺඇൽ Pඋඈඎൽൿඈඈඍ, K. 2001. The f-buffer: A
rasterization-order fifo buffer for multi-pass rendering. Proceed-
ings of the ACM SIGGRAPHConference on Computer Graphics,
WORKSHOP, 57–63.

Mൺඎඅൾ, M., Cඈආൻൺ, J. L. D., Tඈඋർඁൾඅඌൾඇ, R. P., ൺඇൽ Bൺඌඍඈඌ, R.
2011. A survey of raster-based transparency techniques. COM-
PUTERS and GRAPHICS-UK 35, 6, 1023–1034.

Mൺඎඅൾ, M., Cඈආൻൺ, J. ൺ., Tඈඋർඁൾඅඌൾඇ, R., ൺඇൽ Bൺඌඍඈඌ, R. 2013.
Hybrid transparency. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, ACM, New
York, NY, USA, I3D ’13, 103–118.

Mൺඑ, N., Pඎൾඒඈ, X., ൺඇൽ Sർඁඋඈൽൾඋ, P. 1996. Hierarchical render-
ing of trees from precomputed multi-layer z-buffers.

MർDඈඇൺඅൽ, J., 2013. Alpha blending: To pre or not to pre.

MർGඎංඋൾ, M., Oඌආൺඇ, B., Bඎඈඐඌං, M., ൺඇൽ Hൾඇඇൾඌඌඒ, P. 2011.
The alchemy screen-space ambient obscurance algorithm. Pro-
ceedings - Hpg 2011: Acm Siggraph Symposium on High Perfor-
mance Graphics, Proc. - Hpg: Acm Siggraph Symp. High Per-
form. Graph, 25–32.

Mൾඌඁංඇ, H., 2007. Prefix sum pass to linearize a-buffer storage.

Mංඍඍඋංඇ, M. 2007. Finding next gen: Cryengine 2 (course notes).
In ACM SIGGRAPH 2007 courses, ACM, New York, NY, USA,
SIGGRAPH ’07, 97–121.

Mංඍඍඋංඇ, M., 2012. The technology behind the unreal engine 4
elemental demo. Slideshow accompanying a presentation.

Mඒൾඋඌ, K., ൺඇൽ Bൺඏඈංඅ, L. 2007. Stencil routed a-buffer. In ACM
SIGGRAPH 2007 Sketches, ACM, New York, NY, USA, SIG-
GRAPH ’07.

Nൺඅൻൺർඁ, O., Rංඍඌർඁൾඅ, T., ൺඇൽ Sൾංൽൾඅ, H.-P. 2014. Deep screen
space. In Proceedings of the 18th Meeting of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, I3D ’14, 79–86.

Nංർඁඈඅඌ, G., ൺඇൽ Wඒආൺඇ, C. 2009. Multiresolution splatting for
indirect illumination. In Proceedings of the 2009 Symposium

on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, I3D ’09, 83–90.

Nංൾඌඌඇൾඋ, M., Sർඁൺൾൿൾඋ, H., ൺඇൽ Sඍൺආආංඇൾඋ, M. 2010. Fast in-
direct illumination using layered depth images. VISUAL COM-
PUTER 26, 6–8, 679–686.

Nඏංൽංൺ, 2014. Nvidia geforce gtx 980.

Pൺඍඇൾඒ, A., Tඓൾඇ, S., ൺඇൽ Oඐൾඇඌ, J. D. 2010. Fragment-parallel
composite and filter. COMPUTER GRAPHICS FORUM 29, 4,
1251–1258.

Pൾൾඉൾඋ, C., 2008. Prefix sum pass to linearize a-buffer storage. US
Patent App. 11/766,091.

Pඁൺඋඋ, M., ൺඇൽ Hඎආඉඁඋൾඒඌ, G. 2004. Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

Pඈඋඍൾඋ, T., ൺඇൽ Dඎൿൿ, T. 1984. Compositing digital images. Com-
puters and Graphics 18, 3, 253–259.

Rൾඇ, Z., Hඎൺ, W., Cඁൾඇ, L., ൺඇൽ Bൺඈ, H. 2005. Intersection fields
for interactive global illumination. VISUAL COMPUTER 21, 8-
10, 569–578.

Rංർർංඈ, C., 2015. Opengl hardware extension matrix.

Rංඍඌർඁൾඅ, T., Gඋඈඌർඁ, T., Kංආ, M. H., Sൾංൽൾඅ, H.-P., Dൺർඁඌ-
ൻൺർඁൾඋ, C., ൺඇൽ Kൺඎඍඓ, J. 2008. Imperfect shadowmaps for ef-
ficient computation of indirect illumination. ACM Transactions
on Graphics 27, 5, 129.

Rංඍඌർඁൾඅ, T., Gඋඈඌർඁ, T., ൺඇൽ Sൾංൽൾඅ, H. P. 2009. Approximat-
ing dynamic global illumination in image space. Proceedings of
I3d 2009: the 2009 Acm Siggraph Symposium on Interactive 3d
Graphics and Games, Proc. I3d: Acm Siggraph Symp. Interact.
3d Graph. Games, 75–82.

Sൺඅඏං, M., ൺඇൽ Vൺංൽඒൺඇൺඍඁൺඇ, K. 2014. Multi-layer alpha blend-
ing. Symposium on Interactive 3D Graphics, 151–158.

Sൺඅඏං, M., Lൾൿඈඁඇඓ, A., ൺඇൽ Mඈඇඍඈආൾඋඒ, J. 2011. Adaptive
transparency. Proceedings - Hpg 2011: Acm Siggraph Sympo-
sium on High Performance Graphics, Proc. - Hpg: Acm Sig-
graph Symp. High Perform. Graph, 119–126.

Sൺඅඏං, M. 2013. Pixel synchronization: Solving old graphics
problems with new data structures. In ACM SIGGRAPH 2013
courses, Advances in Real-time Rendering in Games, ACM,New
York, NY, USA, SIGGRAPH ’13’.

Sൺආ, 2014. Beautiful maths simplification: quaternion from two
vectors.

Sൻൾඋඍ, M., ൺඇൽ Sඛඇൽൾඓ, X. 1996. The use of global random direc-
tions to compute radiosity. Global Monte Carlo techniques.

Sർඁංඅඅංඇ, A., ൺඇൽ SඍඋൺBൾඋ, W. 1993. Exact: Algorithm and
hardware architecture for an improved a-buffer. Proc ACM SIG-
GRAPH 93 Conf Comput Graphics, 85–91.

Sർඁඃඍඁ, L., Fඋංඌඏൺൽ, J. R., Eඋඅൾൻൾඇ, K., ൺඇൽ Sඉඈඋඋංඇ, J. 2007.
Photon differentials. Proceedings of Graphite 2007, 179–186.

Sൾൺඅ, M., Aൾඅൾඒ, K., Fඋൺඓංൾඋ, C., Lൾൾർඁ, J., ൺඇൽ Bඋඈඐඇ, P.,
2013. The opengl graphics system: A specification (version 4.3
core profile).

Sൾൺඅ, M., Aൾඅൾඒ, K., Fඋൺඓංൾඋ, C., Lൾൾർඁ, J., ൺඇൽ Bඋඈඐඇ, P.,
2014. The opengl graphics system: A specification (version 4.5
core profile).

74

Sඁൺඇආඎൺආ, P., ൺඇൽ Aඋංൺඇ, O. 2007. Hardware accelerated
ambient occlusion techniques on gpus. I3D 2007: ACM SIG-
GRAPH SYMPOSIUMON INTERACTIVE 3D GRAPHICS AND
GAMES, PROCEEDINGS, 73–80.

Sඎංඁൺඋൺ, M., Rൺඎඐൾඇൽൺൺඅ, R., ൺඇൽ Sൺඅඏං, M. 2014. Lay-
ered reflective shadow maps for voxel-based indirect illumina-
tion. 117–125.

Sඎඒൾඇඌ, F., ൺඇൽ Wංඅඅൾආඌ, Y. D. 2009. Path differentials and
applications.

Sඓඣർඌං, L., ൺඇൽ Iඅඅඣඌ, D. 2012. Real-time metaball ray casting with
fragment lists. In Eurographics (Short Papers) ’12, 93–96.

Tඁංൻංൾඋඈඓ, N. 2011. Order-independent transparency using per-
pixel linked lists. In GPU Pro 2: Advanced Rendering Tech-
niques, A K Peters, W. Engel, Ed., 409–431.

Tඈඎඒඈඌඁං, Y., ൺඇൽ Oൺං, S., 2012. Imperfect ray-bundle tracing
for interactive multi-bounce global illumination. High Perfor-
mance Graphics 2012 Posters.

Tඈඎඒඈඌඁං, Y., ൺඇൽ Oൺං, S. 2012. Real-time bidirectional path
tracing via rasterization. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, ACM, New
York, NY, USA, I3D ’12, 183–190.

Tඈඎඒඈඌඁං, Y., Sൾංඇൾඒ, T., ൺඇൽ Oൺංඓ, S. 2011. Fast global
illumination baking via ray-bundles. SIGGRAPH Asia 2011
Sketches, SA’11, 25.

Tඈඎඒඈඌඁං, Y., Sൾංඇൾ, T., Dൺ Sංඅඏൺ, T., ൺඇൽ Kൺඇൺං, T. 2013.
Adaptive ray-bundle tracing with memory usage prediction: Ef-
ficient global illumination in large scenes. Computer Graphics
Forum, Comput Graphics Forum 32, 7, 315–324.

Vൺඋൽංඌ, K., Pൺඉൺංඈൺඇඇඈඎ, G., ൺඇൽ Gൺංඍൺඍඓൾඌ, A. 2013. Multi-view
ambient occlusion with importance sampling. Proceedings of the
Symposium on Interactive 3dGraphics, Proc Symp Interactive 3d
Graphics, 111–118.

Vൺඌංඅൺංඌ, A., ൺඇൽ Fඎൽඈඌ, I. 2012. S-buffer: Sparsity-aware multi-
fragment rendering. In Eurographics 2012 - Short Papers Pro-
ceedings, 101–104.

Vൺඌංඅൺංඌ, A. A., ൺඇൽ Fඎൽඈඌ, I. 2013. Depth-fighting aware meth-
ods for multifragment rendering. Ieee Transactions on Visualiza-
tion and Computer Graphics, Ieee Trans Visual Comput Graph-
ics 19, 6, 967–977.

Vൺඌංඅൺංඌ, A. A., ൺඇൽ Fඎൽඈඌ, I. 2014. K+-buffer: Fragment syn-
chronized k-buffer. In Proceedings of the 18th Meeting of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, ACM, New York, NY, USA, I3D ’14, 143–150.

Vൾൺർඁ, E., Pඎൾඒඈ, X., ൺඇൽ Sർඁඋඈൽൾඋ, P. 1996. Non-symmetric
scattering in light transport algorithms.

Wൺඅൽ, I., Kඈඅඅං, T., Bൾඇඍඁංඇ, C., Kൾඅඅൾඋ, A., ൺඇൽ Sඅඎඌൺඅඅൾ,
P. 2002. Interactive global illumination using fast ray tracing.
Eurographics Workshop on Rendering, 15–24.

Wඁංඍඍൾൽ, T. 1980. An improved illumination model for shaded
display. Commun. ACM 23, 6 (June), 343–349.

Wංඇඇൾඋ, S., Kൾඅඅൾඒ, M., Pൾൺඌൾ, B., Rංඏൺඋൽ, B., ൺඇൽ Yൾඇ, A. 1997.
Hardware accelerated rendering of antialiasing using a modified
a-buffer algorithm.

Wංඍඍൾඇൻඋංඇ, C. 2001. R-buffer: A pointerless a-buffer hardware
architecture. Proceedings of the ACM SIGGRAPH Conference
on Computer Graphics, WORKSHOP, 73–80.

Yൺඇ, J., ൺඇൽ MർKൾൾ, J. 2010. Real-time order independent trans-
parency and indirect illumination using direct3d 11. In Proceed-
ings of the Siggraph 2010 course Advances in Real-Time Ren-
dering in 3D Graphics and Games.

Yൺඇ, J. C., Hൾඇඌඅൾඒ, J., Gඋඎൾඇ, H., ൺඇൽ Tඁංൻංൾඋඈඓ, N. 2010.
Real-time concurrent linked list construction on the gpu. COM-
PUTER GRAPHICS FORUM 29, 4, 1297–1304.

Zඁൺඇ, C., Hඌංൾඁ, H.-H., ൺඇൽ Sඁൾඇ, H.-W. 2008. Real-time reflec-
tions on curved objects using layered depth textures. MCCSIS’08
- IADIS Multi Conference on Computer Science and Information
Systems; Proceedings of Computer Graphics and Visualization
2008 and Gaming 2008: Design for Engaging Experience Soc.
Interaction, 276–281.

Zඁඎඈඏ, S., Iඈඇൾඌ, A., Kඋඈඇංඇ, G., Dඋൾඍඍൺංඌ, G., ൺඇൽ Mൺඑ, N.
1998. An ambient light illumination model.

Zංඋඋ, T., Rൾඁൿൾඅൽ, H., ൺඇൽ Dൺർඁඌൻൺർඁൾඋ, C. 2014. Object-order
ray tracing for fully dynamic scenes. In GPU Pro 5: Advanced
Rendering Techniques, W. Engel, Ed. CRC Press, 419–438.

75

Appendix

Equality of Double Inversion used in HBAO

We will now prove the equality claimed in Section 4.2.3. That is, we want to prove that

1

π

ˆ
H
F (ω) cos θdω = 1− 1

π

ˆ
H
(1− F (ω)) cos θdω

where F is any function for which the integral is defined. H is the unit hemisphere defined by the normal, n. θ is the angle between ω and n.
The equality can be shown by expanding the terms on the right-hand side

1− 1

π

ˆ
H
(1− F (ω)) cos θdω = 1− 1

π

(ˆ
H
cos θdω −

ˆ
H
F (ω) cos θdω

)
= 1− 1

π

(ˆ 2π

ϕ=0

ˆ π
2

θ=0

cos θ sin θdθdϕ−
ˆ
H
F (ω) cos θdω

)

= 1− 1

π

(
π −
ˆ
H
F (ω) cos θdω

)
=

1

π

ˆ
H
F (ω) cos θdω

where the integral over the cosine term has been expanded using spherical coordinates.

Source Code

The full source code can be found in the Git repository at ඁඍඍඉඌ://ංඍඁඎൻ.ർඈආ/ൿඋൾൽൾඋංൺൺඅඎඇൽ/ඌൿඃ. Below, we have listed the subset of
GLSL code which highlights the core functionality.

Listing 12: Point Cloud Visualization
1 #extension GL_NV_shader_buffer_load: enable
2 #extension GL_NV_gpu_shader5: enable
3 #extension GL_EXT_shader_image_load_store: enable
4

5 uniform samplerBuffer lights;
6 uniform ivec2 window_dimensions;
7

8

9

10 struct view_type {
11 mat4 view_matrix, projection_matrix, view_projection_matrix;
12 vec4 eye;
13 vec4 right, forward, up;
14 ivec2 dimensions;
15 };
16

17

18 layout(std140) uniform user_view_block
19 { view_type user_view; };
20

21 uniform int ldm_view_count;
22

23 readonly restrict layout(std430) buffer view_block
24 { view_type views[]; };
25

26 readonly restrict layout(std430) buffer data_offset_block
27 { uvec4 data_offsets[]; };
28

29

30

31 struct ldm_data {
32 uint32_t next;
33 //uint32_t compressed_diffuse;
34 float depth;

76

https://github.com/frederikaalund/sfj

35 };
36 readonly restrict layout (std430) buffer data_buffer
37 { ldm_data data[]; };
38 writeonly restrict layout (std430) buffer debug_view_buffer
39 { uint32_t debug_view[]; };
40

41

42

43

44 void draw_layered_depth_map(
45 in vec2 ndc_position,
46 in view_type view,
47 in uint32_t data_offset,
48 in uint32_t id)
49 {
50 uint32_t heads_index = data_offset + uint32_t(gl_FragCoord.x) + uint32_t(gl_FragCoord.y) *

window_dimensions.x;
51 uint32_t current = data[heads_index].next;
52

53 // Constants
54 const int max_list_length = 2000;
55

56 // Loop over each point
57 int list_length = 0;
58 while (0 != current && list_length < max_list_length) {
59 float depth = data[current].depth;
60 current = data[current].next;
61 list_length++;
62

63 vec3 wc_eye_position = view.eye.xyz;
64 vec3 right = view.right.xyz;
65 vec3 forward = view.forward.xyz;
66 vec3 up = view.up.xyz;
67

68 // Othographic
69 const float right_scale = 2000.0;
70 const float top_scale = 2000.0;
71

72 vec3 direction = (
73 forward * depth
74 + right * right_scale * ndc_position.x
75 + up * top_scale * ndc_position.y);
76 vec3 wc_sample_position = wc_eye_position + direction;
77

78 // Project into user view
79 vec4 cc_sample_position = user_view.view_projection_matrix * vec4(wc_sample_position, 1.0);
80 if (cc_sample_position.x > cc_sample_position.w || cc_sample_position.x < -cc_sample_position.w
81 || cc_sample_position.y > cc_sample_position.w || cc_sample_position.y < -cc_sample_position.w
82 || cc_sample_position.z > cc_sample_position.w || cc_sample_position.z < -cc_sample_position.w)
83 continue;
84 vec3 ndc_sample_position = cc_sample_position.xyz / cc_sample_position.w;
85 vec2 tc_sample_position = (ndc_sample_position.xy + vec2(1.0)) * 0.5;
86 uvec2 sc_sample_position = uvec2(tc_sample_position * user_view.dimensions);
87

88 // Write to buffer (as if it was a texture)
89 uint32_t index = sc_sample_position.x + sc_sample_position.y * user_view.dimensions.x;
90 debug_view[index] = id;
91 }
92 }
93

94

95

96 void main() {
97 vec2 tc_position = vec2(gl_FragCoord) / window_dimensions;
98 vec2 ndc_position = tc_position * 2.0 - vec2(1.0);
99

77

100 for (int i = 0; i < ldm_view_count; ++i)
101 draw_layered_depth_map(ndc_position, views[i], data_offsets[i][0], i + 1);
102 }

Listing 12: Point Cloud Visualization

Listing 13: Layered Depth Map Clear Pass
1 #extension GL_NV_shader_buffer_load: enable
2 #extension GL_NV_gpu_shader5: enable
3 #extension GL_EXT_shader_image_load_store: enable
4

5 uniform ivec2 window_dimensions;
6 uniform int ldm_view_count;
7

8

9 struct ldm_data {
10 uint32_t next;
11 float depth;
12 };
13 writeonly restrict layout (std430) buffer data_buffer
14 { ldm_data data[]; };
15

16 writeonly restrict layout (std430) buffer debug_view_buffer
17 { uint32_t debug_view[]; };
18

19 struct color_data {
20 uint32_t r, g, b;
21 };
22

23

24 struct vertex_data
25 {
26 vec3 wc_view_ray_direction;
27 };
28 noperspective in vertex_data vertex;
29 layout(pixel_center_integer) in uvec2 gl_FragCoord;
30

31 void main()
32 {
33 uint32_t index = gl_FragCoord.x + gl_FragCoord.y * window_dimensions.x;
34

35 for (int i = 0; i < ldm_view_count; ++i)
36 data[i*window_dimensions.x*window_dimensions.y + index].next = 0;
37

38 debug_view[index] = 0;
39 }

Listing 13: Layered Depth Map Clear Pass

Listing 14: Layered Depth Map Construction Pass
1 #extension GL_NV_shader_buffer_load: enable
2 #extension GL_NV_gpu_shader5: enable
3 #extension GL_EXT_shader_image_load_store: enable
4

5 uniform sampler2D diffuse_texture;
6

7 uniform ivec2 window_dimensions;
8 uniform uint32_t total_data_offset;
9

10

11

12 struct ldm_data {
13 uint32_t next;
14 //uint32_t compressed_diffuse;
15 float depth;
16 };

78

17

18 layout(binding = 0, offset = 0) uniform atomic_uint count;
19 coherent restrict layout(std430) buffer data_buffer
20 { ldm_data data[]; };
21

22

23

24 struct vertex_data
25 {
26 float negative_ec_position_z;
27 vec2 oc_texture_coordinate;
28 };
29 in vertex_data vertex;
30

31

32

33 uint32_t allocate() { return total_data_offset + atomicCounterIncrement(count); }
34

35

36 uint32_t compress(in vec4 color)
37 { return (uint32_t(color.x * 255.0) << 24u) + (uint32_t(color.y * 255.0) << 16u) + (uint32_t(color.z * 255.0)

<< 8u) + (uint32_t(0.1*255.0)); }
38

39

40

41 void main()
42 {
43 //vec2 tc_texture_coordinates = vec2(vertex.oc_texture_coordinate.x, 1.0 - vertex.oc_texture_coordinate.y);
44 //vec4 diffuse = texture(diffuse_texture, tc_texture_coordinates);
45

46 //uint32_t compressed_diffuse = compress(diffuse);
47 //float depth = gl_FragCoord.z;
48 float depth = vertex.negative_ec_position_z;
49

50 // Calculate indices
51 uint32_t head = total_data_offset + uint32_t(gl_FragCoord.x) + uint32_t(gl_FragCoord.y) * window_dimensions

.x;
52 uint32_t new = allocate();
53

54 // Store fragment data in node
55 //data[new].compressed_diffuse = compressed_diffuse;
56 data[new].depth = depth;
57

58 // Start with the head node
59 uint32_t previous = head;
60 uint32_t current = data[head].next;
61

62 // Insert the new node while maintaining a sorted list.
63 // The algorithm finishes in a finite yet indeterminate number of steps.
64 // Indeterminate, since some steps may be repeated due to concurrent updates.
65 // Thus the total number of steps required for a single insertion
66 // is not known beforehand. However, finiteness guarantees
67 // that the algorithm terminates eventually. In other words,
68 // it is a lock-free algorithm (though not wait-free).
69

70 for (;;)
71 //const int max_iterations = 2048;
72 //for (int i = 0; i < max_iterations; ++i)
73 // We are either at the end of the list or just before a node of greater depth...
74 if (current == 0 || depth < data[current].depth) {
75 // ...so we attempt to insert the new node here. First,
76 // the new node is set to point to the current node. It is crucial
77 // that this change happens now since the next step makes
78 // the new node visible to other threads. That is, the new node must
79 // be in a complete state before becoming visible.
80 data[new].next = current;

79

81

82 // Memory barrier omitted for added performance.
83

84 // Then the previous node is atomically updated to point to new node
85 // if the previous node still points to the current node.
86 // Returns the original content of data[previous].next (regardless of the
87 // result of the comparison).
88 uint32_t previous_next = atomicCompSwap(data[previous].next, current, new);
89

90 // The atomic update occurred...
91 if (previous_next == current)
92 // ...so we are done.
93 break;
94 // Another thread updated data[previous].next before us...
95 else
96 // ...so we continue from previous_next
97 current = previous_next;
98 // We are still searching for a place to insert the new node...
99 } else {
100 // ...so we advance to the next node in the list.
101 previous = current;
102 current = data[current].next;
103 //current = atomicAdd(data[current].next, 0); // Atomic read
104 }
105 }

Listing 14: Layered Depth Map Construction Pass

Listing 15: HBAO
1 #define USE_RANDOM_DIRECTION 0
2

3 const int poisson_disc_size = 128;
4 uniform vec2 poisson_disc[poisson_disc_size];
5

6 uniform sampler2D depths;
7 uniform sampler2D wc_normals;
8 uniform sampler2D random;
9

10 uniform vec3 wc_view_eye_position;
11 uniform float z_far;
12

13 uniform ivec2 window_dimensions;
14

15 uniform mat4 view_matrix;
16 uniform mat4 projection_matrix;
17 uniform mat4 view_projection_matrix;
18 uniform mat4 inverse_view_projection_matrix;
19

20

21

22 struct vertex_data
23 {
24 vec3 wc_view_ray_direction;
25 };
26 noperspective in vertex_data vertex;
27

28 layout(location = 0) out vec4 ambient_occlusion;
29

30

31

32

33 //
34 /// Utility Functions
35 //
36 vec2 get_one_over_tan_half_fov(in mat4 projection_matrix)
37 { return vec2(projection_matrix[0][0], projection_matrix[1][1]); }

80

38

39 float get_tc_z(
40 in sampler2D sampler,
41 in vec2 tc_position)
42 { return texture(sampler, tc_position).z; }
43

44 float get_tc_z(
45 in sampler2D sampler,
46 in vec2 tc_position,
47 in vec2 tc_offset)
48 { return get_tc_z(sampler, tc_position + tc_offset); }
49

50 float get_ec_z(
51 in float tc_z,
52 in mat4 projection_matrix)
53 { return projection_matrix[3][2] / (-2.0 * tc_z + 1.0 - projection_matrix[2][2]); }
54

55 float get_ec_z(
56 in sampler2D sampler,
57 in vec2 tc_position,
58 in mat4 projection_matrix)
59 { return get_ec_z(get_tc_z(sampler, tc_position), projection_matrix); }
60

61 vec3 get_ec_position(in vec2 tc_position, in float ec_position_z, in mat4 projection_matrix)
62 {
63 vec2 one_over_tan_half_fov = get_one_over_tan_half_fov(projection_matrix);
64 vec2 tan_half_fov = 1.0 / one_over_tan_half_fov;
65

66 vec2 ndc_position = tc_position * vec2(2.0) - vec2(1.0);
67 vec2 cc_position = ndc_position * -ec_position_z;
68 return vec3(tan_half_fov * cc_position, ec_position_z);
69 }
70

71 vec3 get_ec_position(in sampler2D sampler, in vec2 tc_position, in mat4 projection_matrix)
72 {
73 float ec_position_z = get_ec_z(sampler, tc_position, projection_matrix);
74 return get_ec_position(tc_position, ec_position_z, projection_matrix);
75 }
76

77 vec2 get_tc_length(in float ec_length, in float ec_position_z, in mat4 projection_matrix)
78 {
79 vec2 one_over_tan_half_fov = get_one_over_tan_half_fov(projection_matrix);
80 return 0.5 * ec_length * one_over_tan_half_fov / -ec_position_z;
81 }
82

83

84 //
85 /// Trigonometric Functions
86 //
87 float tan_to_sin(in float x)
88 {
89 return x * pow(x * x + 1.0, -0.5);
90 }
91

92

93 vec3 minimum_difference(in vec3 p, in vec3 p_right, in vec3 p_left)
94 {
95 vec3 v1 = p_right - p;
96 vec3 v2 = p - p_left;
97 return (dot(v1, v1) < dot(v2, v2)) ? v1 : v2;
98 }
99

100 vec3 tangent_eye_pos(in sampler2D sampler, in vec2 tc, in vec4 tangentPlane, in mat4 projection_matrix)
101 {
102 // view vector going through the surface point at tc
103 vec3 V = get_ec_position(sampler, tc, projection_matrix);

81

104 float NdotV = dot(tangentPlane.xyz, V);
105 // intersect with tangent plane except for silhouette edges
106 if (NdotV < 0.0) V *= (tangentPlane.w / NdotV);
107 return V;
108 }
109

110

111

112 void main()
113 {
114 vec2 tc_position = gl_FragCoord.xy / window_dimensions;
115 vec3 ec_position = get_ec_position(depths, tc_position, projection_matrix);
116 vec3 wc_normal = texture(wc_normals, tc_position).xyz;
117 vec3 ec_normal = transpose(inverse(mat3(view_matrix))) * wc_normal;
118

119 ambient_occlusion.a = 0.0;
120

121 const int base_samples = 0;
122 const int min_samples = 512;
123 const float ec_radius = 1280.0;
124 const float ec_radius_squared = ec_radius * ec_radius;
125 const float bias = 0.0;
126

127 const int samples = min_samples;
128

129 vec2 tc_radius = get_tc_length(ec_radius, ec_position.z, projection_matrix);
130 vec2 sc_radius = tc_radius * window_dimensions;
131

132

133 if (sc_radius.x < 1.0)
134 {
135 ambient_occlusion.a = 1.0;
136 return;
137 }
138

139 // Stepping
140 const int max_steps = 128; // 8
141 int steps = min(int(sc_radius.x), max_steps);
142

143

144 vec3 random_direction = texture(random, tc_position).xyz;
145 random_direction = normalize(random_direction * 2.0 - 1.0);
146

147 float angle_step = 2.0 * PI / float(samples);
148 float uniform_distribution_random = texture(random, tc_position).x;
149 float alpha = uniform_distribution_random * PI * 2.0;
150 mat2 random_rotation = mat2(cos(alpha), sin(alpha), -sin(alpha), cos(alpha));
151

152 vec3 bent_normal = vec3(0.0);
153

154 vec2 depths_size = textureSize(depths, 0);
155 vec2 depths_size_inversed = vec2(1.0) / depths_size;
156

157 vec3 p_right, p_left, p_top, p_bottom;
158 vec4 tangentPlane = vec4(ec_normal, dot(ec_position, ec_normal));
159 p_right = tangent_eye_pos(depths, tc_position + vec2(depths_size_inversed.x, 0.0), tangentPlane,

projection_matrix);
160 p_left = tangent_eye_pos(depths, tc_position + vec2(-depths_size_inversed.x, 0.0), tangentPlane,

projection_matrix);
161 p_top = tangent_eye_pos(depths, tc_position + vec2(0.0, depths_size_inversed.y), tangentPlane,

projection_matrix);
162 p_bottom = tangent_eye_pos(depths, tc_position + vec2(0.0, -depths_size_inversed.y), tangentPlane,

projection_matrix);
163 vec3 dp_du = minimum_difference(ec_position, p_right, p_left);
164 vec3 dp_dv = minimum_difference(ec_position, p_top, p_bottom) * (depths_size.y * depths_size_inversed.x);
165

82

166 for (int i = 0; i < samples; ++i)
167 {
168 #if USE_RANDOM_DIRECTION
169 vec2 tc_sample_direction = random_rotation * poisson_disc[i];
170 #else
171 vec2 tc_sample_direction = vec2(cos(float(i) * angle_step), sin(float(i) * angle_step));
172 #endif
173 // Tangent vector
174 vec3 ec_tangent = tc_sample_direction.x * dp_du + tc_sample_direction.y * dp_dv;
175 float tan_tangent_angle = ec_tangent.z / length(ec_tangent.xy) + tan(bias);
176

177 // Stepping
178 vec2 tc_step_size = tc_sample_direction * tc_radius / float(steps);
179 vec2 random_offset = tc_step_size * uniform_distribution_random;
180

181 // Initialize horizon angle to the tangent angle
182 float tan_horizon_angle = tan_tangent_angle;
183 float sin_horizon_angle = tan_to_sin(tan_horizon_angle);
184

185 for (float j = 0.0; j < float(steps); j += 1.0)
186 {
187 vec2 tc_sample = vec2(tc_position + tc_step_size * j + random_offset);
188 vec3 ec_sample = get_ec_position(depths, tc_sample, projection_matrix);
189 vec3 ec_ray = ec_sample - ec_position;
190 float ec_ray_length_squared = dot(ec_ray, ec_ray);
191 float tan_sample_angle = ec_ray.z / length(ec_ray.xy);
192

193 bool in_hemisphere = ec_radius_squared >= ec_ray_length_squared;
194 bool new_occluder = tan_sample_angle > tan_horizon_angle;
195

196 if (in_hemisphere && new_occluder)
197 {
198 float sin_sample_angle = tan_to_sin(tan_sample_angle);
199 float falloff = 1.0 - ec_ray_length_squared / ec_radius_squared;
200 //float falloff = 1.0 - pow(min(sqrt(ec_ray_length_squared) / ec_radius, 1.0), 2.0);
201 float horizon = sin_sample_angle - sin_horizon_angle;
202 ambient_occlusion.a += horizon * falloff;
203 tan_horizon_angle = tan_sample_angle;
204 sin_horizon_angle = sin_sample_angle;
205

206 bent_normal += normalize(ec_ray) * falloff;
207 }
208 }
209 }
210

211 bent_normal = normalize(bent_normal) * 0.5 + 0.5;
212 ambient_occlusion.rgb = bent_normal;
213 ambient_occlusion.a /= samples;
214 ambient_occlusion.a = 1.0 - ambient_occlusion.a;
215 }

Listing 15: HBAO

Listing 16: Direct Lighting and Ambient Occlusion
1 #extension GL_NV_shader_buffer_load: enable
2 #extension GL_NV_gpu_shader5: enable
3 #extension GL_EXT_shader_image_load_store: enable
4

5 //#define USE_PHYSICAL_SOFT_SHADOWS
6 //#define USE_OREN_NAYAR_DIFFUSE_REFLECTANCE
7

8 const int poisson_disc_size = 16;
9 uniform vec2 poisson_disc[poisson_disc_size];
10

11 uniform sampler2D depths;
12 uniform sampler2D wc_normals, wc_positions;

83

13 uniform sampler2D albedos;
14 uniform sampler2D random;
15 uniform sampler2D ambient_occlusion;
16 uniform sampler2D shadow_map_0, shadow_map_1;
17 uniform sampler2D photon_splats, light_albedos;
18

19 uniform samplerBuffer lights;
20 #ifdef USE_TILED_SHADING
21 uniform isamplerBuffer light_grid;
22 uniform isamplerBuffer light_index_list;
23 uniform int tile_size;
24 #else
25 uniform int lights_size;
26 #endif
27

28 uniform ivec2 window_dimensions;
29 uniform ivec2 grid_dimensions;
30

31 uniform vec3 wc_view_eye_position;
32 uniform float z_near, z_far;
33

34 uniform mat4 projection_matrix;
35

36

37 struct view_type {
38 mat4 view_matrix, projection_matrix, view_projection_matrix;
39 vec4 eye;
40 vec4 right, forward, up;
41 ivec2 dimensions;
42 };
43

44 layout(std140) uniform user_view_block
45 { view_type user_view; };
46

47 uniform int ldm_view_count;
48

49 readonly restrict layout(std430) buffer view_block
50 { view_type views[]; };
51

52 readonly restrict layout(std430) buffer data_offset_block
53 { uvec4 data_offsets[]; };
54

55

56

57 struct light_type {
58 mat4 projection_matrix, view_projection_matrix;
59 vec4 wc_direction;
60 float radius;
61 };
62

63 layout(std140) uniform light_block
64 { light_type light; };
65

66

67

68 struct ldm_data {
69 uint32_t next;
70 float depth;
71 };
72 readonly restrict layout (std430) buffer data_buffer
73 { ldm_data data[]; };
74 readonly restrict layout (std430) buffer debug_view_buffer
75 { uint32_t debug_view[]; };
76 struct color_data {
77 uint32_t r, g, b;
78 };

84

79 readonly restrict layout (std430) buffer photon_splat_buffer
80 { color_data photon_splats_data[]; };
81

82

83

84

85 struct vertex_data
86 {
87 vec3 wc_view_ray_direction;
88 };
89 noperspective in vertex_data vertex;
90

91 layout(location = 0) out vec4 color;
92 //out vec4 overbright;
93

94

95

96 //
97 /// Utility Functions
98 //
99 float get_tc_z(
100 in sampler2D sampler,
101 in vec2 tc_position)
102 { return texture(sampler, tc_position).z; }
103

104 float get_tc_z(
105 in sampler2D sampler,
106 in vec2 tc_position,
107 in vec2 tc_offset)
108 { return get_tc_z(sampler, tc_position + tc_offset); }
109

110 float get_ec_z(
111 in float tc_z,
112 in mat4 projection_matrix)
113 { return projection_matrix[3][2] / (-2.0 * tc_z + 1.0 - projection_matrix[2][2]); }
114

115 float get_ec_z(
116 in sampler2D sampler,
117 in vec2 tc_position,
118 in mat4 projection_matrix)
119 { return get_ec_z(get_tc_z(sampler, tc_position), projection_matrix); }
120

121

122

123 //
124 /// Shading functions
125 //
126 float calculate_shadow_coefficient(
127 in sampler2D shadow_map,
128 in light_type light,
129 in vec3 wc_position,
130 in vec3 wc_normal,
131 in vec2 tc_window,
132 in float uniform_distribution_random)
133 {
134 // Override
135 light.radius = 5.0;
136

137 // Normal bias (virtually translate scene along normal vectors)
138 float cos_alpha = clamp(dot(wc_normal, light.wc_direction.xyz), 0.0, 1.0);
139 float normal_bias_coefficient = sqrt(1.0 - cos_alpha * cos_alpha); // <=> sin(acos(wc_normal,

light_direction));
140 wc_position += wc_normal * normal_bias_coefficient * 1.5;
141

142 // Coordinate transformations
143 vec4 cc_position = light.view_projection_matrix * vec4(wc_position, 1.0);

85

144 vec3 ndc_position = cc_position.xyz / cc_position.w;
145 vec3 tc_position = (ndc_position + vec3(1.0)) * 0.5;
146 float ec_position_z = get_ec_z(tc_position.z, light.projection_matrix);
147

148 // Shadow behind light
149 if (ec_position_z > 0.0) return 0.0;
150

151 // Sample count as a function of light size
152 int chi = int(light.radius / 12.5);
153 int samples = clamp(chi * chi, 4, poisson_disc_size);
154

155 // Random 2D rotation
156 float alpha = uniform_distribution_random * PI * 2.0;
157 mat2 random_rotation = mat2(cos(alpha), sin(alpha), -sin(alpha), cos(alpha));
158

159 // Occluder search radius
160 vec2 inverted_shadow_map_size = 1.0 / vec2(textureSize(shadow_map, 0));
161 float tc_occluder_search_radius = light.radius * inverted_shadow_map_size;
162

163 #ifdef USE_PHYSICAL_SOFT_SHADOWS
164 // Occluder search
165 int occluder_count = 0;
166 float ec_occluder_z = 0.0;
167 for (int i = 0; i < samples; ++i)
168 {
169 vec2 tc_offset = random_rotation * poisson_disc[i] * tc_occluder_search_radius;
170

171 float tc_occluder_sample_z = get_tc_z(shadow_map, tc_position.xy, tc_offset);
172 float ec_occluder_sample_z = get_ec_z(tc_occluder_sample_z, light.projection_matrix);
173

174 float ec_occluder_distance = ec_occluder_sample_z - ec_position_z;
175 if (0.0 < ec_occluder_distance)
176 {
177 ec_occluder_z += ec_occluder_sample_z;
178 ++occluder_count;
179 }
180 }
181 // Return if no occluders were found
182 if (0 == occluder_count) return 1.0;
183 // Average occluder position
184 ec_occluder_z /= occluder_count;
185 // Distance from occluder to shading position
186 float ec_occluder_distance = ec_occluder_z - ec_position_z;
187

188 // Penumbra ratio relative to the light size (Calculated using similar triangles)
189 float penumbra_ratio = ec_occluder_distance / ec_occluder_z;
190 #else
191 const float penumbra_ratio = 0.05;
192 #endif
193 // Sample for shadows in the penumbra
194 float tc_shadow_sampling_radius = tc_occluder_search_radius * penumbra_ratio;
195

196 // Shadow sampling (Using percentage-closer filtering)
197 float shadow_coefficient = 0.0;
198 for (int i = 0; i < samples; ++i)
199 {
200 vec2 tc_offset = random_rotation * poisson_disc[i] * tc_shadow_sampling_radius;
201 float tc_occluder_sample_z = get_tc_z(shadow_map, tc_position.xy, tc_offset);
202

203 if (tc_occluder_sample_z > tc_position.z)
204 shadow_coefficient += 1.0;
205 }
206 return shadow_coefficient / float(samples);
207 }
208

209

86

210

211 vec3 fresnel_schlick(in vec3 specular_color, in vec3 wc_direction, in vec3 wc_half_angle)
212 {
213 return specular_color + (vec3(1.0) - specular_color)
214 * pow(1.0 - max(dot(wc_direction, wc_half_angle), 0.0), 5.0);
215 }
216

217

218

219 vec4 get_reflected_light(
220 in vec3 wc_position,
221 in vec3 wc_normal,
222 in vec3 wc_view_direction,
223 in vec3 albedo,
224 in vec3 bent_normal,
225 in float roughness)
226 {
227 vec3 wc_reflection = reflect(wc_view_direction, wc_normal);
228 // View direction is more convenient to store negated
229 wc_view_direction = -wc_view_direction;
230 // Common terms in the BRDFs
231 float a = roughness * roughness;
232 float a_squared = a * a;
233 vec3 material_specular_color = vec3(1.0, 1.0, 1.0);
234

235 vec4 result = vec4(0.0, 0.0, 0.0, 1.0);
236 const int count = 1;
237

238 for (int l = 0; l < count; ++l)
239 {
240 int light_id = l;
241

242 #define LIGHT_STRUCT_SIZE 6
243

244 vec3 wc_light_position = vec3(texelFetch(lights, light_id * LIGHT_STRUCT_SIZE).x, texelFetch(lights,
light_id * LIGHT_STRUCT_SIZE + 1).x, texelFetch(lights, light_id * LIGHT_STRUCT_SIZE + 2).x);

245 vec3 light_color = vec3(texelFetch(lights, light_id * LIGHT_STRUCT_SIZE + 3).x, texelFetch(lights,
light_id * LIGHT_STRUCT_SIZE + 4).x, texelFetch(lights, light_id * LIGHT_STRUCT_SIZE + 5).x);

246

247 float light_radius = 1.0;
248 light_color *= 400000.0;
249

250

251 // Representative point approximation of spherical lights
252 // Reference: http://www.unrealengine.com/files/downloads/2013SiggraphPresentationsNotes.pdf
253 vec3 wc_light_direction_unnormalized = wc_light_position - wc_position;
254 vec3 wc_center_to_reflection = dot(wc_light_direction_unnormalized, wc_reflection)
255 * wc_reflection - wc_light_direction_unnormalized;
256 vec3 wc_representative_point = wc_light_position
257 + wc_light_direction_unnormalized + wc_center_to_reflection
258 * clamp(light_radius / length(wc_center_to_reflection), 0.0, 1.0);
259

260

261 // Common BRDF parameters
262 vec3 wc_light_direction = wc_light_position - wc_position;
263 float wc_light_distance = length(wc_light_direction);
264 wc_light_direction /= wc_light_distance;
265 // The half angle vector (h)
266 vec3 wc_half_angle = normalize(wc_light_direction + wc_view_direction);
267 // Common dot products
268 float dotNH = dot(wc_normal, wc_half_angle);
269 float dotNV = dot(wc_normal, wc_view_direction);
270 float dotNL = dot(wc_normal, wc_light_direction);
271

272 // Spot light
273

87

274 // Carpet Light
275 vec3 wc_light_target = vec3(300.0, 100.0, -220.0);
276 // Sky Light
277 //vec3 wc_light_target = vec3(300.0, 600.0, -220.0);
278

279

280 vec3 wc_direction = normalize(wc_light_position - wc_light_target);
281 float eta = acos(max(dot(wc_light_direction, wc_direction), 0.0));
282 if (eta > PI / 8.0) return vec4(0.0);
283

284 // Falloff
285 float falloff = 1.0 / (wc_light_distance * wc_light_distance);
286

287 // Representative point normalization
288 float a_prime = clamp(a + light_radius / (3.0 * wc_light_distance), 0.0, 1.0);
289 float a_ratio = a / a_prime;
290 float specular_sphere_normalization = a_ratio * a_ratio;
291

292 // Specularly reflected light
293 // Reference: http://www.unrealengine.com/files/downloads/2013SiggraphPresentationsNotes.pdf
294 /*
295 float chi = PI * (dotNH * dotNH * (a_squared - 1.0) + 1.0);
296 float D = a_squared / (chi * chi);
297 float k = (roughness + 1.0) * (roughness + 1.0);
298 float Gv = dotNV / (dotNV * (1.0 - k) + k);
299 float Gl = dotNL / (dotNL * (1.0 - k) + k);
300 float G = Gv * Gl;
301 vec3 F = fresnel_schlick(material_specular_color, wc_view_direction, wc_half_angle);
302 vec3 specularly_reflected_light = (D * F * G) / (4.0 * dotNL * dotNV)
303 * specular_sphere_normalization;
304 */
305 vec3 specularly_reflected_light = vec3(0.0);
306

307 // Diffusely reflected light
308 vec3 diffusely_reflected_light = albedo * max(dotNL, 0.0)
309 * (vec3(1.0) - specularly_reflected_light);
310

311 #ifdef USE_OREN_NAYAR_DIFFUSE_REFLECTANCE
312 // Reference: http://content.gpwiki.org/index.php/D3DBook:(Lighting)_Oren-Nayar
313 float acos_dotNV = acos(dotNV);
314 float acos_dotNL = acos(dotNL);
315 float alpha = max(acos_dotNV, acos_dotNL);
316 float beta = min(acos_dotNV, acos_dotNL);
317 float gamma = dot(wc_view_direction - wc_normal * dotNV,
318 wc_light_direction - wc_normal * dotNL);
319

320 float A = 1.0 - 0.5 * a / (a + 0.33);
321 float B = 0.45 * a / (a + 0.09);
322

323 diffusely_reflected_light *= (A + (B * max(0.0, gamma) * sin(alpha) * tan(beta)));
324 #endif
325

326 // Total reflected light
327 result.rgb += (specularly_reflected_light + diffusely_reflected_light)
328 * light_color * falloff;
329 }
330

331 return result;
332 }
333

334 vec4 get_view_color(in int view_id) {
335 const vec4 colors[3] = {vec4(0.0, 1.0, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(1.0, 0.0, 0.0, 0.0)};
336 return colors[view_id % 3];
337 }
338

339

88

340 vec4 get_debug_view() {
341 uint32_t index = uint32_t(gl_FragCoord.x) + uint32_t(gl_FragCoord.y) * window_dimensions.x;
342

343 if (0 < debug_view[index])
344 return vec4(1.0);//get_view_color(int(debug_view[index] - 1));
345 return vec4(0.0);
346 }
347

348

349

350 const float max_distance = 9999999.0;
351 float visibility(in float occluder_distance)
352 { return (occluder_distance == max_distance) ? 1.0 : 0.0; }
353

354 const float falloff_distance = 200.0;
355 const float falloff_exponent = 2.0;
356 float attenuated_visibility(in float occluder_distance)
357 { return pow(min(occluder_distance / falloff_distance, 1.0), falloff_exponent); }
358

359 float trace_ambient_occlusion(in int view_id, in vec3 wc_position, in vec3 wc_normal) {
360 view_type view = views[view_id];
361 uint32_t data_offset = data_offsets[view_id];
362

363 // Normal offset (virtually translate scene along normal vector)
364 float cos_alpha = clamp(dot(wc_normal, view.forward.xyz), 0.0, 1.0);
365 float normal_offset = sqrt(1.0 - cos_alpha * cos_alpha); // <=> sin(acos(cos_alpha));
366 const float constant_factor = 10.0;
367 wc_position += wc_normal * normal_offset * constant_factor;
368

369 // Coordinate transformations
370 vec4 cc_position = view.view_projection_matrix * vec4(wc_position, 1.0);
371 if (cc_position.x > cc_position.w || cc_position.x < -cc_position.w
372 || cc_position.y > cc_position.w || cc_position.y < -cc_position.w
373 || cc_position.z > cc_position.w || cc_position.z < -cc_position.w)
374 // Assume clear outside of LDM bounds
375 return 1.0;
376

377 vec3 ndc_position = cc_position.xyz / cc_position.w;
378 vec3 tc_position = (ndc_position + vec3(1.0)) * 0.5;
379 uvec2 sc_position = uvec2(tc_position.xy * view.dimensions);
380

381 vec3 wc_eye = view.eye.xyz;
382 vec3 right = view.right.xyz;
383 vec3 forward = view.forward.xyz;
384 vec3 up = view.up.xyz;
385

386 // Othographic
387 const float right_scale = 2000.0;
388 const float top_scale = 2000.0;
389

390 // Get the head node
391 uint32_t head_index = data_offset + sc_position.x + sc_position.y * view.dimensions.x;
392 uint32_t current = data[head_index].next;
393

394 const int max_list_length = 200;
395 float min_distance = max_distance;
396 float previous_distance = min_distance;
397 float next_distance = min_distance;
398 bool get_next = false;
399

400 int list_length = 0;
401 while (0 != current && list_length++ < max_list_length) {
402 float depth = data[current].depth;
403 vec3 direction = (
404 forward * (depth)
405 + right * right_scale * ndc_position.x

89

406 + up * top_scale * ndc_position.y);
407 vec3 wc_sample_position = wc_eye + direction;
408

409 float sample_distance = distance(wc_sample_position, wc_position);
410

411 if (get_next) {
412 get_next = false;
413 next_distance = sample_distance;
414 }
415

416 if (sample_distance < min_distance) {
417 previous_distance = min_distance;
418 min_distance = sample_distance;
419 get_next = true;
420 } else break;
421

422 current = data[current].next;
423 }
424 if (get_next) next_distance = max_distance;
425

426 float cos_theta = dot(view.forward.xyz, wc_normal);
427

428 return (cos_theta > 0.0)
429 ? visibility(next_distance) * cos_theta
430 : visibility(previous_distance) * -cos_theta;
431 }
432

433 float trace_ambient_occlusion(in vec3 wc_position, in vec3 wc_normal) {
434 float result = 0.0;
435 for (int i = 0; i < ldm_view_count; ++i)
436 result += trace_ambient_occlusion(i, wc_position, wc_normal);
437 return 2.0 * result / float(ldm_view_count);
438 }
439

440

441 //#define DIRECT_LIGHT
442

443 void main()
444 {
445 vec2 tc_window = gl_FragCoord.xy / window_dimensions;
446 float ec_position_z = get_ec_z(depths, tc_window, projection_matrix);
447 vec3 wc_position = wc_view_eye_position + vertex.wc_view_ray_direction * -ec_position_z / z_far;
448 vec3 wc_normal = texture(wc_normals, tc_window).xyz;
449 vec3 wc_view_direction = normalize(vertex.wc_view_ray_direction);
450 vec3 albedo = texture(albedos, tc_window).xyz;
451

452 float ambient_occlusion_factor = texture(ambient_occlusion, tc_window).a;
453

454 #ifdef DIRECT_LIGHT
455 float roughness = 1.0;
456 float uniform_distribution_random = texture(random, tc_window).x;
457

458 vec3 bent_normal = normalize(texture(ambient_occlusion, tc_window).rgb * 2.0 - 1.0);
459 const float a = 0.0;
460 const float b = 1.0;
461 const float c = 1.0;
462 //ambient_occlusion_factor = pow(b * (ambient_occlusion_factor + a), c);
463

464 // Direct light
465 color = get_reflected_light(
466 wc_position,
467 wc_normal,
468 wc_view_direction,
469 albedo,
470 bent_normal,
471 roughness);

90

472

473 // Shadow Mapping
474 color.rgb *=
475 calculate_shadow_coefficient(
476 shadow_map_0,
477 light,
478 wc_position,
479 wc_normal,
480 tc_window,
481 uniform_distribution_random);
482 #endif
483

484 // Indirect light
485 //color.rgb += 0.08 * albedo;
486 //color.rgb += 0.08 * albedo * ambient_occlusion_factor;
487

488 //vec4 environment_color = 0.05 * vec4(0.7, 0.7, 1.0, 1.0) * vec4(trace_ambient_occlusion(wc_position,
wc_normal));

489 //color += texture(photon_splats, tc_window) + environment_color;
490

491 // Overrides
492 //color.rgb = vec3(ambient_occlusion_factor);
493 color = vec4(trace_ambient_occlusion(wc_position, wc_normal));
494 //color += texture(photon_splats, tc_window);
495

496 //color.rgb = texture(wc_positions, tc_window).xyz;
497 //color = ldm();
498 //color.rgb *= 0.1;
499 //color = 1.0 * vec4(albedo, 0.0) + get_debug_view();
500

501 //color = texture(light_albedos, tc_window);
502 //color += sampling_test(wc_position);
503 //color.rgb = wc_position;
504 //color.rgb = albedo;
505 //color.rgb = vec3(float(counts[index]) / 20.0);
506

507 // Overbright
508 const float bloom_limit = 1.0;
509 vec3 bright_color = max(color.rgb - vec3(bloom_limit), vec3(0.0));
510 float brightness = dot(bright_color, vec3(1.0));
511 brightness = smoothstep(0.0, 0.5, brightness);
512 //overbright.rgb = mix(vec3(0.0), color.rgb, brightness);
513 }

Listing 16: Direct Lighting and Ambient Occlusion

Listing 17: Photon Tracing
1 #extension GL_NV_gpu_shader5: enable
2

3 uniform sampler2D depths, wc_positions, wc_normals, light_depths, light_wc_normals, light_albedos;
4

5 uniform ivec2 window_dimensions;
6 uniform mat4 projection_matrix;
7 uniform float z_far;
8 uniform vec3 wc_view_eye_position;
9

10

11

12 struct view_type {
13 mat4 view_matrix, projection_matrix, view_projection_matrix;
14 vec4 eye;
15 vec4 right, forward, up;
16 ivec2 dimensions;
17 };
18

19 layout(std140) uniform current_view_block

91

20 { view_type current_view; };
21

22 layout(std140) uniform user_view_block
23 { view_type user_view; };
24

25 uniform int ldm_view_count;
26

27 readonly restrict layout(std430) buffer view_block
28 { view_type views[]; };
29

30 readonly restrict layout(std430) buffer data_offset_block
31 { uvec4 data_offsets[]; };
32

33

34

35 struct ldm_data {
36 uint32_t next;
37 float depth;
38 };
39 readonly restrict layout(std430) buffer data_buffer
40 { ldm_data data[]; };
41

42

43

44 layout(binding = 1, offset = 0) uniform atomic_uint photon_count;
45

46 struct photon_data {
47 vec4 wc_position, wc_normal, Du_x, Dv_x, radiant_flux;
48 };
49 coherent restrict layout(std430) buffer photon_buffer
50 { photon_data photons[]; };
51

52

53

54

55 struct vertex_data
56 {
57 vec3 wc_view_ray_direction;
58 };
59 noperspective in vertex_data vertex;
60

61

62

63 uint32_t compress(in vec4 clr)
64 { return (uint32_t(clr.x*255.0) << 24u) + (uint32_t(clr.y*255.0) << 16u) + (uint32_t(clr.z*255.0) << 8u) + (

uint32_t(0.1*255.0)); }
65

66 vec4 decompress(uint32_t rgba)
67 { return vec4(float((rgba>>24u)&255u),float((rgba>>16u)&255u),float((rgba>>8u)&255u),float(rgba&255u)) /

255.0; }
68

69 float get_tc_z(
70 in sampler2D sampler,
71 in vec2 tc_position)
72 { return texture(sampler, tc_position).z; }
73

74 float get_ec_z(
75 in float tc_z,
76 in mat4 projection_matrix)
77 { return projection_matrix[3][2] / (-2.0 * tc_z + 1.0 - projection_matrix[2][2]); }
78

79 float get_ec_z(
80 in sampler2D sampler,
81 in vec2 tc_position,
82 in mat4 projection_matrix)
83 { return get_ec_z(get_tc_z(sampler, tc_position), projection_matrix); }

92

84

85

86

87 bool get_user_view_coordinates(in vec3 wc_position, out float ec_position_z, out ivec2 pc_position) {
88 vec4 cc_position = user_view.view_projection_matrix * vec4(wc_position, 1.0);
89 if (cc_position.x > cc_position.w || cc_position.x < -cc_position.w
90 || cc_position.y > cc_position.w || cc_position.y < -cc_position.w
91 || cc_position.z > cc_position.w || cc_position.z < -cc_position.w)
92 return false;
93 vec3 ndc_position = cc_position.xyz / cc_position.w;
94 vec2 tc_position = (ndc_position.xy + vec2(1.0)) * 0.5;
95 ec_position_z = get_ec_z(depths, tc_position, user_view.projection_matrix);
96 pc_position = ivec2(tc_position * user_view.dimensions);
97 return true;
98 }
99

100

101 vec2 get_one_over_tan_half_fov(in mat4 projection_matrix)
102 { return vec2(projection_matrix[0][0], projection_matrix[1][1]); }
103

104 vec2 get_tc_length(in float ec_length, in float ec_position_z, in mat4 projection_matrix)
105 {
106 vec2 one_over_tan_half_fov = get_one_over_tan_half_fov(projection_matrix);
107 return 0.5 * ec_length * one_over_tan_half_fov / -ec_position_z;
108 }
109

110 float K(float x) {
111 if (x >= 1.0) return 0.0;
112 return 3.0 / PI * (1.0 - x * x) * (1.0 - x * x);
113 }
114

115 struct photon_differential
116 { vec3 Du_x, Dv_x, Du_d, Dv_d; };
117

118 photon_differential construct_photon_differential(in vec3 d_hat, in vec3 right, in vec3 up) {
119 vec3 Du_d = (dot(d_hat, d_hat) * right - dot(d_hat, right) * d_hat) / pow(dot(d_hat, d_hat), 3.0 / 2.0);
120 vec3 Dv_d = (dot(d_hat, d_hat) * up - dot(d_hat, up) * d_hat) / pow(dot(d_hat, d_hat), 3.0 / 2.0);
121 return photon_differential(vec3(0.0), vec3(0.0), Du_d, Dv_d);
122 }
123

124 void transfer(inout photon_differential photon, in vec3 d, in vec3 n, in float t) {
125 float Du_t = -dot((photon.Du_x + t * photon.Du_d), n) / dot(d, n);
126 float Dv_t = -dot((photon.Dv_x + t * photon.Dv_d), n) / dot(d, n);
127

128 photon.Du_x = (photon.Du_x + t * photon.Du_d) + Du_t * d;
129 photon.Dv_x = (photon.Dv_x + t * photon.Dv_d) + Dv_t * d;
130 }
131

132 vec4 alpha(in vec3 w_i, in vec3 w_o)
133 { return normalize(vec4(cross(w_i, w_o), 1.0 + dot(w_i, w_o))); }
134

135 // See https://code.google.com/p/kri/wiki/Quaternions for reference
136 vec3 rotate_vector(vec4 q, vec3 v)
137 { return v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v); }
138

139 void diffusely_reflect(inout photon_differential photon, in vec3 w_i, in vec3 w_o) {
140 vec4 q = alpha(w_i, w_o);
141 photon.Du_d = rotate_vector(q, photon.Du_d);
142 photon.Dv_d = rotate_vector(q, photon.Dv_d);
143 }
144

145

146 void store_photon(in vec3 wc_position, in vec3 wc_normal, in photon_differential photon, in vec4 radiant_flux
) {

147 vec3 abs_x = max(abs(photon.Du_x), abs(photon.Dv_x));
148 float max_x = max(max(abs_x.x, abs_x.y), abs_x.z);

93

149 const float photon_footprint_bias = 0.5;
150 if (photon_footprint_bias < max_x) return;
151

152 uint32_t id = atomicCounterIncrement(photon_count);
153

154 photons[id].wc_position = vec4(wc_position, 1.0);
155 photons[id].wc_normal = vec4(wc_normal, 0.0);
156 photons[id].Du_x = vec4(photon.Du_x, 0.0);
157 photons[id].Dv_x = vec4(photon.Dv_x, 0.0);
158 photons[id].radiant_flux = vec4(radiant_flux.rgb, 1.0);
159 }
160

161

162 void store_first_bounce(in photon_differential photon, in vec3 wc_position, in vec3 wc_x, in vec3 wc_normal,
in vec3 w_i, in vec3 w_o, in vec4 radiant_flux_and_f) {

163 const float const_bias = 0.1;
164 float ec_z_actual = (user_view.view_matrix * vec4(wc_x, 1.0)).z;
165

166 // Project into user view
167 float ec_z_seen_by_user;
168 ivec2 pc_user_position;
169 if (get_user_view_coordinates(wc_x, ec_z_seen_by_user, pc_user_position)
170 && ec_z_seen_by_user < ec_z_actual + const_bias)
171 {
172 vec3 wc_hit_normal = texture(wc_normals, vec2(pc_user_position) / vec2(user_view.dimensions)).xyz;
173 float t = distance(wc_position, wc_x);
174

175 diffusely_reflect(photon, w_i, w_o);
176 transfer(photon, w_o, wc_hit_normal, t);
177

178 float cos_theta = dot(wc_normal, w_o); // [sr]
179 if (0.0 < cos_theta)
180 store_photon(wc_x, wc_hit_normal, photon, radiant_flux_and_f * cos_theta);
181 }
182 }
183

184 void store_first_bounce_in_both_directions(in int view_id, in photon_differential photon, in vec3 wc_position,
in vec3 wc_normal, in vec4 radiant_flux_and_f) {

185 view_type view = views[view_id];
186 uint32_t data_offset = data_offsets[view_id];
187

188 // Coordinate transformations
189 vec4 cc_position = view.view_projection_matrix * vec4(wc_position, 1.0);
190 if (cc_position.x > cc_position.w || cc_position.x < -cc_position.w
191 || cc_position.y > cc_position.w || cc_position.y < -cc_position.w
192 || cc_position.z > cc_position.w || cc_position.z < -cc_position.w)
193 return;
194 vec3 ndc_position = cc_position.xyz / cc_position.w;
195 vec3 tc_position = (ndc_position + vec3(1.0)) * 0.5;
196 uvec2 pc_position = uvec2(tc_position.xy * view.dimensions);
197

198 vec3 wc_eye = view.eye.xyz;
199 vec3 right = view.right.xyz;
200 vec3 forward = view.forward.xyz;
201 vec3 up = view.up.xyz;
202

203 // Othographic
204 const float right_scale = 2000.0;
205 const float top_scale = 2000.0;
206

207 // Get the head node
208 uint32_t heads_index = data_offset + pc_position.x + pc_position.y * view.dimensions.x;
209 uint32_t current = data[heads_index].next;
210

211 const int max_list_length = 2048;
212 const float FLOAT_MAX = 999999.0;

94

213 float min_distance = FLOAT_MAX;
214 float previous_distance = min_distance;
215 float next_distance = min_distance;
216 vec3 wc_sample_position,
217 wc_last_sample_position,
218 wc_previous,
219 wc_next;
220 uint32_t sample_diffuse, last_diffuse, previous_diffuse, next_diffuse;
221 bool get_next = false;
222

223 int list_length = 0;
224 while (0 != current && list_length < max_list_length) {
225 float depth = data[current].depth;
226

227 vec3 direction = (
228 forward * depth
229 + right * right_scale * ndc_position.x
230 + up * top_scale * ndc_position.y);
231 wc_sample_position = wc_eye + direction;
232

233 float sample_distance = distance(wc_sample_position, wc_position);
234

235 if (get_next) {
236 get_next = false;
237 next_distance = sample_distance;
238 wc_next = wc_sample_position;
239 }
240

241 if (sample_distance < min_distance) {
242 previous_distance = min_distance;
243 wc_previous = wc_last_sample_position;
244

245 min_distance = sample_distance;
246 get_next = true;
247 } else break;
248

249 wc_last_sample_position = wc_sample_position;
250

251 current = data[current].next;
252 ++list_length;
253 }
254 if (get_next) wc_next = vec3(FLOAT_MAX);
255

256 if (1 >= list_length) return;
257

258

259 vec3 w_i = normalize(-vertex.wc_view_ray_direction);
260

261 store_first_bounce(photon, wc_position, wc_previous, wc_normal, w_i, normalize(-forward),
radiant_flux_and_f);

262 store_first_bounce(photon, wc_position, wc_next, wc_normal, w_i, normalize(forward),
radiant_flux_and_f);

263 }
264

265

266 void main()
267 {
268 // Convert to spot light
269 float radius = length(gl_FragCoord.xy / window_dimensions - vec2(0.5));
270 if (radius > 0.5) discard;
271

272 // Deferred parameters
273 const ivec2 light_view_dimensions = ivec2(100);
274 const vec2 window_scale_constant = vec2(light_view_dimensions) / float(user_view.dimensions);
275 vec2 tc_window = gl_FragCoord.xy / window_dimensions * window_scale_constant;
276 float ec_position_z = get_ec_z(light_depths, tc_window, projection_matrix);

95

277 vec3 wc_position = wc_view_eye_position + vertex.wc_view_ray_direction * -ec_position_z / z_far;
278 vec4 rho_d = texture(light_albedos, tc_window); // [1]
279 vec3 wc_normal = texture(light_wc_normals, tc_window).xyz;
280 const vec4 light_radiant_flux = vec4(vec3(1000000000.0), 1.0); // [W]
281 const int light_view_size = light_view_dimensions.x * light_view_dimensions.y;
282 const float spot_light_ratio = PI / 4.0; // A_circle / A_square
283 const int photon_count = int(light_view_size * 2 * ldm_view_count * spot_light_ratio);
284 const vec4 radiant_flux = light_radiant_flux / float(photon_count); // [W]
285

286 // Rename for consistency with theory
287 vec3 x = wc_view_eye_position;
288 vec3 n = wc_normal;
289 vec3 d_hat = vertex.wc_view_ray_direction;
290 vec3 d = normalize(d_hat);
291 vec3 right = current_view.right.xyz;
292 vec3 up = current_view.up.xyz;
293

294 // Ray differential construction and initial transfer
295 photon_differential photon = construct_photon_differential(d_hat, right, up);
296

297 float t = -ec_position_z;//-dot(x, n) / dot(d, n);
298 transfer(photon, d, n, t);
299

300 // Direct photon
301 //store_photon(wc_position, wc_normal, photon, radiant_flux);
302

303 // 1. bounce
304 vec4 f = rho_d / PI; // [sr^-1]
305 for (int i = 0; i < ldm_view_count; i++)
306 store_first_bounce_in_both_directions(i, photon, wc_position, wc_normal, radiant_flux * f);
307 }

Listing 17: Photon Tracing

Listing 18: Photon Splatting Vertex Shader
1 uniform mat4 view_matrix;
2 uniform mat4 view_projection_matrix;
3 uniform uint photon_count;
4

5

6

7 layout(location = 0) in vec3 wc_position;
8 layout(location = 1) in vec3 wc_normal;
9 layout(location = 2) in vec3 Du_x;
10 layout(location = 3) in vec3 Dv_x;
11 layout(location = 4) in vec4 radiant_flux;
12

13 out photon_data {
14 vec3 wc_position, Du_x, Dv_x;
15 vec4 irradiance;
16 mat3 M;
17 } photon;
18

19 mat3 mat3_from_rows(in vec3 row1, in vec3 row2, in vec3 row3) {
20 return mat3(
21 row1.x, row2.x, row3.x, // Column 1
22 row1.y, row2.y, row3.y, // Column 2
23 row1.z, row2.z, row3.z); // Column 3
24 }
25

26 void main() {
27 gl_Position = view_projection_matrix * vec4(wc_position, 1.0);
28 photon.wc_position = wc_position;
29

30 const float scale = 2000.0;
31 photon.Du_x = Du_x * scale;

96

32 photon.Dv_x = Dv_x * scale;
33

34 const float a = scale;
35 photon.M = mat3_from_rows(
36 cross(photon.Dv_x, wc_normal),
37 cross(wc_normal, photon.Du_x),
38 a * wc_normal);
39 photon.M *= 2.0 / dot(photon.Du_x, cross(photon.Dv_x, wc_normal));
40

41 float area = PI / 4.0 * length(cross(photon.Du_x, photon.Dv_x)); // [m^2]
42 photon.irradiance = radiant_flux / area; // [W * m^-2]
43 }

Listing 18: Photon Splatting Vertex Shader

Listing 19: Photon Splatting Geometry Shader
1 uniform mat4 view_projection_matrix;
2

3

4

5 layout(points) in;
6 layout(triangle_strip, max_vertices = 4) out;
7

8 in photon_data {
9 vec3 wc_position, Du_x, Dv_x;
10 vec4 irradiance;
11 mat3 M;
12 } photon[];
13

14 out splat_data {
15 flat vec3 wc_position;
16 flat mat3 M;
17 flat vec4 irradiance;
18 } splat;
19

20

21 vec4 cc_position(in vec3 wc_offset)
22 { return view_projection_matrix * vec4(photon[0].wc_position + wc_offset, 1.0); }
23

24 void main() {
25 splat.wc_position = photon[0].wc_position;
26 splat.irradiance = photon[0].irradiance;
27 splat.M = photon[0].M;
28

29 gl_Position = cc_position(0.5 * (-photon[0].Du_x - photon[0].Dv_x));
30 EmitVertex();
31

32 gl_Position = cc_position(0.5 * (-photon[0].Du_x + photon[0].Dv_x));
33 EmitVertex();
34

35 gl_Position = cc_position(0.5 * (photon[0].Du_x - photon[0].Dv_x));
36 EmitVertex();
37

38 gl_Position = cc_position(0.5 * (photon[0].Du_x + photon[0].Dv_x));
39 EmitVertex();
40 }

Listing 19: Photon Splatting Geometry Shader

Listing 20: Photon Splatting Fragment Shader
1 uniform sampler2D wc_positions, albedos;
2 uniform float specular_exponent;
3 uniform ivec2 window_dimensions;
4

5

6 in splat_data {

97

7 flat vec3 wc_position;
8 flat mat3 M;
9 flat vec4 irradiance;
10 } splat;
11

12 layout(location = 0) out vec4 radiance;
13

14

15

16 float K(float x) {
17 return (1.0 > x)
18 ? 3.0 / PI * (1.0 - x * x) * (1.0 - x * x)
19 : 0.0;
20 }
21

22 void main() {
23 vec2 tc_position = gl_FragCoord.xy / vec2(window_dimensions);
24 vec3 wc_position = texture(wc_positions, tc_position).xyz;
25 vec4 albedo = texture(albedos, tc_position); // [1]
26

27 float d = length(splat.M * (wc_position - splat.wc_position));
28 vec4 f = albedo / PI; // [sr^-1]
29

30 radiance = PI * K(d) * f * splat.irradiance; // [W * m^-2 * sr^-1]
31 }

Listing 20: Photon Splatting Fragment Shader

98

This thesis was prepared at the department of Applied Math-
ematics and Computer Science (DTU Compute) at the Tech-
nical University of Denmark (DTU) in fulfilment of the re-
quirements for acquiring an M.Sc. in Mathematical Mod-
elling and Computing (MMC).

Technical University of Denmark
Department of Applied Mathematics and Computer Science

Rංർඁൺඋൽ Pൾඍൾඋඌൾඇඌ Pඅൺൽඌ, Bඎංඅൽංඇ 324,
2800 Kඈඇൾඇඌ Lඒඇൻඒ, Dൾඇආൺඋ

Phone +45 4525 3031
CVR 30 06 09 46
EAN 5798000428515

ർඈආඉඎඍൾ@ർඈආඉඎඍൾ.ൽඍඎ.ൽ
ඐඐඐ.ർඈආඉඎඍൾ.ൽඍඎ.ൽ

Frederik Peter Aalund Lyngby, February 1, 2015 DTU Compute—M.Sc.—February, 2015

99

https://maps.google.com/maps/ms?msid=202877233734783870181.0004e5f1b0d16450e4bba&msa=0
https://maps.google.com/maps/ms?msid=202877233734783870181.0004e5f1b0d16450e4bba&msa=0
mailto:compute@compute.dtu.dk
http://www.compute.dtu.dk

